1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <fstream>
#include <complex>
#include <cmath>
namespace po = boost::program_options;
/***********************************************************************
* Constants
**********************************************************************/
static const double e = 2.71828183;
static const double tau = 6.28318531;
static const double alpha = 0.0001; //very tight iir filter
static const size_t wave_table_len = 8192;
static const float ampl = 0.7; //transmitted wave amplitude
static const double tx_wave_freq = 507.123e3; //freq of tx sine wave in Hz
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
static std::vector<std::complex<float> > gen_table(void){
std::vector<std::complex<float> > wave_table(wave_table_len);
std::vector<double> real_wave_table(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = std::sin((tau*i)/wave_table_len);
//compute i and q pairs with 90% offset and scale to amplitude
for (size_t i = 0; i < wave_table_len; i++){
const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
wave_table[i] = std::complex<float>(ampl*real_wave_table[i], ampl*real_wave_table[q]);
}
return wave_table;
}
static std::complex<float> wave_table_lookup(size_t &index){
static const std::vector<std::complex<float> > wave_table = gen_table();
index %= wave_table_len;
return wave_table[index];
}
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static double compute_tone_dbrms(
const std::vector<std::complex<float> > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
std::vector<std::complex<double> > shifted(samples.size());
for (size_t i = 0; i < shifted.size(); i++){
shifted[i] = std::complex<double>(samples[i]) * std::pow(e, std::complex<double>(0, -freq*tau*i));
}
std::vector<std::complex<float> > buff(shifted.size());
for (size_t i = 0; i < buff.size(); i++) buff[i] = shifted[i];
std::ofstream outfile("/home/jblum/Desktop/gen.dat", std::ofstream::binary);
outfile.write((const char*)&buff.front(), buff.size() * 8);
//filter the samples with a narrow low pass
std::complex<double> iir_output = 0, iir_last = 0;
double output = 0;
for (size_t i = 0; i < shifted.size(); i++){
iir_output = alpha * shifted[i] + (1-alpha)*iir_last;
iir_last = iir_output;
output += std::abs(iir_output);
}
return 20*std::log10(output/shifted.size());
}
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp){
uhd::set_thread_priority_safe();
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector<std::complex<float> > buff(tx_stream->get_max_num_samps()*10);
//values for the wave table lookup
size_t index = 0;
const double tx_rate = usrp->get_tx_rate();
const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested()){
for (size_t i = 0; i < buff.size(); i++){
buff[i] = wave_table_lookup(index);
index += step;
}
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args;
double rate;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
("rate", po::value<double>(&rate)->default_value(12.5e6), "RX and TX sample rate in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("USRP Generate Daughterboard Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
<< std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//set the sample rates
usrp->set_rx_rate(rate);
usrp->set_tx_rate(rate);
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(2.155e9);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
{
boost::system_time start = boost::get_system_time();
while (not usrp->get_tx_sensor("lo_locked").to_bool()){
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
throw std::runtime_error("timed out waiting for TX LO to lock");
}
}
}
//tune the receiver
usrp->set_rx_freq(2.155e9 - .9344e6);
{
boost::system_time start = boost::get_system_time();
while (not usrp->get_rx_sensor("lo_locked").to_bool()){
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
throw std::runtime_error("timed out waiting for RX LO to lock");
}
}
}
//set max receiver gain
usrp->set_rx_gain(usrp->get_rx_gain_range().stop());
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp));
//receive some samples
std::vector<std::complex<float> > buff(100000);
usrp->set_time_now(uhd::time_spec_t(0.0));
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size();
stream_cmd.stream_now = false;
stream_cmd.time_spec = uhd::time_spec_t(0.1);
usrp->issue_stream_cmd(stream_cmd);
uhd::rx_metadata_t md;
const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
if (num_rx_samps != buff.size()){
throw std::runtime_error("did not get all the samples requested");
}
//stop the transmitter
threads.interrupt_all();
threads.join_all();
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq;
const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq;
const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
std::cout << "bb_tone_freq " << bb_tone_freq << std::endl;
std::cout << "bb_imag_freq " << bb_imag_freq << std::endl;
std::cout << "tone_dbrms " << tone_dbrms << std::endl;
std::cout << "imag_dbrms " << imag_dbrms << std::endl;
std::cout << "supression " << (tone_dbrms - imag_dbrms) << std::endl;
return 0;
}
|