//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace po = boost::program_options;
/***********************************************************************
* Constants
**********************************************************************/
static const double e = 2.71828183;
static const double tau = 6.28318531;
static const double alpha = 0.0001; //very tight iir filter
static const size_t wave_table_len = 8192;
static const float ampl = 0.7; //transmitted wave amplitude
static const double tx_wave_freq = 507.123e3; //freq of tx sine wave in Hz
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
static std::vector > gen_table(void){
std::vector > wave_table(wave_table_len);
std::vector real_wave_table(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = std::sin((tau*i)/wave_table_len);
//compute i and q pairs with 90% offset and scale to amplitude
for (size_t i = 0; i < wave_table_len; i++){
const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
wave_table[i] = std::complex(ampl*real_wave_table[i], ampl*real_wave_table[q]);
}
return wave_table;
}
static std::complex wave_table_lookup(size_t &index){
static const std::vector > wave_table = gen_table();
index %= wave_table_len;
return wave_table[index];
}
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static double compute_tone_dbrms(
const std::vector > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
std::vector > shifted(samples.size());
for (size_t i = 0; i < shifted.size(); i++){
shifted[i] = std::complex(samples[i]) * std::pow(e, std::complex(0, -freq*tau*i));
}
std::vector > buff(shifted.size());
for (size_t i = 0; i < buff.size(); i++) buff[i] = shifted[i];
std::ofstream outfile("/home/jblum/Desktop/gen.dat", std::ofstream::binary);
outfile.write((const char*)&buff.front(), buff.size() * 8);
//filter the samples with a narrow low pass
std::complex iir_output = 0, iir_last = 0;
double output = 0;
for (size_t i = 0; i < shifted.size(); i++){
iir_output = alpha * shifted[i] + (1-alpha)*iir_last;
iir_last = iir_output;
output += std::abs(iir_output);
}
return 20*std::log10(output/shifted.size());
}
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp){
uhd::set_thread_priority_safe();
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector > buff(tx_stream->get_max_num_samps()*10);
//values for the wave table lookup
size_t index = 0;
const double tx_rate = usrp->get_tx_rate();
const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested()){
for (size_t i = 0; i < buff.size(); i++){
buff[i] = wave_table_lookup(index);
index += step;
}
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args;
double rate;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value(&args)->default_value(""), "device address args [default = \"\"]")
("rate", po::value(&rate)->default_value(12.5e6), "RX and TX sample rate in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("USRP Generate Daughterboard Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
<< std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//set the sample rates
usrp->set_rx_rate(rate);
usrp->set_tx_rate(rate);
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(2.155e9);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
{
boost::system_time start = boost::get_system_time();
while (not usrp->get_tx_sensor("lo_locked").to_bool()){
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
throw std::runtime_error("timed out waiting for TX LO to lock");
}
}
}
//tune the receiver
usrp->set_rx_freq(2.155e9 - .9344e6);
{
boost::system_time start = boost::get_system_time();
while (not usrp->get_rx_sensor("lo_locked").to_bool()){
if (boost::get_system_time() > start + boost::posix_time::milliseconds(100)){
throw std::runtime_error("timed out waiting for RX LO to lock");
}
}
}
//set max receiver gain
usrp->set_rx_gain(usrp->get_rx_gain_range().stop());
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp));
//receive some samples
std::vector > buff(100000);
usrp->set_time_now(uhd::time_spec_t(0.0));
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size();
stream_cmd.stream_now = false;
stream_cmd.time_spec = uhd::time_spec_t(0.1);
usrp->issue_stream_cmd(stream_cmd);
uhd::rx_metadata_t md;
const size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
if (num_rx_samps != buff.size()){
throw std::runtime_error("did not get all the samples requested");
}
//stop the transmitter
threads.interrupt_all();
threads.join_all();
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq;
const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq;
const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate);
const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate);
std::cout << "bb_tone_freq " << bb_tone_freq << std::endl;
std::cout << "bb_imag_freq " << bb_imag_freq << std::endl;
std::cout << "tone_dbrms " << tone_dbrms << std::endl;
std::cout << "imag_dbrms " << imag_dbrms << std::endl;
std::cout << "supression " << (tone_dbrms - imag_dbrms) << std::endl;
return 0;
}