diff options
Diffstat (limited to 'fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc')
| -rw-r--r-- | fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc b/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc new file mode 100644 index 000000000..cffbd839a --- /dev/null +++ b/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc @@ -0,0 +1,264 @@ +# +# Copyright 2017 Ettus Research, A National Instruments Company +# SPDX-License-Identifier: LGPL-3.0 +# +# Timing analysis is performed in "usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx". +# See this spreadsheet for more details and explanations. + +#******************************************************************************* +## Asynchronous clock groups + +# MGT reference clocks are also async to everything. +set_clock_groups -asynchronous -group [get_clocks mgt_clk_dba -include_generated_clocks] +set_clock_groups -asynchronous -group [get_clocks mgt_clk_dbb -include_generated_clocks] + +# fpga_clk_a and fpga_clk_b are related to one another after synchronization. +# However, we do need to declare that these clocks (both a and b) and their children +# are async to the remainder of the design. Use the wildcard at the end to grab the +# virtual clock as well as the real ones. +set_clock_groups -asynchronous -group [get_clocks {fpga_clk_a* fpga_clk_b*} -include_generated_clocks] + +# The SPI readback and write clocks cannot be active at the same time, as they +# originate from the same pin. +set_clock_groups -physically_exclusive \ + -group [get_clocks pl_spi_rb_clk_a] \ + -group [get_clocks pl_spi_clk_a] +set_clock_groups -physically_exclusive \ + -group [get_clocks pl_spi_rb_clk_b] \ + -group [get_clocks pl_spi_clk_b] + +#******************************************************************************* +## PS SPI: since these lines all come from the PS and I don't have access to the +# driving clock (or anything for that matter), I'm left with constraining the maximum +# and minimum delay on these lines, per a Xilinx AR: +# https://www.xilinx.com/support/answers/62122.html +set CPLD_SPI_OUTS [get_ports {DB*_CPLD_PS_SPI_SCLK \ + DB*_CPLD_PS_SPI_MOSI \ + DB*_CPLD_PS_SPI_CS_B \ + DB*_CLKDIS_SPI_CS_B \ + DB*_PHDAC_SPI_CS_B \ + DB*_ADC_SPI_CS_B \ + DB*_DAC_SPI_CS_B}] + +# The actual min and max path delays before applying constraints were (from report_timing): +# 3.332 ns (Min at Fast Process Corner) +# 10.596 ns (Max at Slow Process Corner) +# Therefore, we round those number to their immediate succesor respectively. +# After implementation, the tools were unable to meet timing when leaving a 11 ns max +# delay value, so it was incremented. +set MIN_OUT_DELAY 3.0 +set MAX_OUT_DELAY 12.0 + +set_max_delay $MAX_OUT_DELAY -to $CPLD_SPI_OUTS +set_min_delay $MIN_OUT_DELAY -to $CPLD_SPI_OUTS + +# report_timing -to $CPLD_SPI_OUTS -max_paths 20 -delay_type min_max -name CpldSpiOutTiming + +# The actual min and max path delays before applying constraints were (from report_timing): +# 2.733 ns (Min at Fast Process Corner) +# 6.071 ns (Max at Slow Process Corner) +# Therefore, we round those number to their immediate succesor respectively. +set MIN_IN_DELAY 2.0 +set MAX_IN_DELAY 10.0 + +set PS_SPI_INPUTS_0 [get_pins -hierarchical -filter {NAME =~ "*/PS7_i/EMIOSPI0MI"}] +set PS_SPI_INPUTS_1 [get_pins -hierarchical -filter {NAME =~ "*/PS7_i/EMIOSPI1MI"}] + +set_max_delay $MAX_IN_DELAY -to $PS_SPI_INPUTS_0 +set_min_delay $MIN_IN_DELAY -to $PS_SPI_INPUTS_0 +set_max_delay $MAX_IN_DELAY -to $PS_SPI_INPUTS_1 +set_min_delay $MIN_IN_DELAY -to $PS_SPI_INPUTS_1 + +# report_timing -to $PS_SPI_INPUTS_0 -max_paths 30 -delay_type min_max -nworst 30 -name Spi0InTiming +# report_timing -to $PS_SPI_INPUTS_1 -max_paths 30 -delay_type min_max -nworst 30 -name Spi1InTiming + + + +#******************************************************************************* +## PL SPI to the CPLD +# +# All of these lines are driven or received from flops in simple_spi_core. The CPLD +# calculations assume the FPGA has less than 6 ns of skew between the SCK and +# SDI/CS_n. Pretty easy constraint to write! See above for the clock definition. +# Do this for DBA and DBB independently. +set MAX_SKEW 6.0 +set SETUP_SKEW [expr {$MAX_SKEW / 2}] +set HOLD_SKEW [expr {$MAX_SKEW / 2}] +# Do not set the output delay constraint on the clock line! +set PORT_LIST_A [get_ports {DBA_CPLD_PL_SPI_CS_B \ + DBA_CPLD_PL_SPI_MOSI \ + DBA_TXLO_SPI_CS_B \ + DBA_RXLO_SPI_CS_B \ + DBA_LODIS_SPI_CS_B }] +set PORT_LIST_B [get_ports {DBB_CPLD_PL_SPI_CS_B \ + DBB_CPLD_PL_SPI_MOSI \ + DBB_TXLO_SPI_CS_B \ + DBB_RXLO_SPI_CS_B \ + DBB_LODIS_SPI_CS_B }] +# Then add the output delay on each of the ports. +set_output_delay -clock [get_clocks pl_spi_clk_a] -max -$SETUP_SKEW $PORT_LIST_A +set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_a] -max -$SETUP_SKEW $PORT_LIST_A +set_output_delay -clock [get_clocks pl_spi_clk_a] -min $HOLD_SKEW $PORT_LIST_A +set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_a] -min $HOLD_SKEW $PORT_LIST_A +set_output_delay -clock [get_clocks pl_spi_clk_b] -max -$SETUP_SKEW $PORT_LIST_B +set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_b] -max -$SETUP_SKEW $PORT_LIST_B +set_output_delay -clock [get_clocks pl_spi_clk_b] -min $HOLD_SKEW $PORT_LIST_B +set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_b] -min $HOLD_SKEW $PORT_LIST_B +# Finally, make both the setup and hold checks use the same launching and latching edges. +set_multicycle_path -setup -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_a] -start 0 +set_multicycle_path -hold -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_a] -1 +set_multicycle_path -setup -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_b] -start 0 +set_multicycle_path -hold -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_b] -1 + +# For SDO input timing (MISO), we need to look at the CPLD's constraints on turnaround +# time plus any board propagation delay. +# CPLD clk-to-q is 20 ns, then add 1.2 ns for board delay (once for clock, once for data) +# For hold time, assume zero delay (likely overconstraining here, due to board delays) +set MISO_INPUT_A [get_ports DBA_CPLD_PL_SPI_MISO] +set MISO_INPUT_B [get_ports DBB_CPLD_PL_SPI_MISO] +set_input_delay -clock [get_clocks pl_spi_rb_clk_a] -clock_fall -max 22.400 $MISO_INPUT_A +set_input_delay -clock [get_clocks pl_spi_rb_clk_a] -clock_fall -min 0.000 $MISO_INPUT_A +set_input_delay -clock [get_clocks pl_spi_rb_clk_b] -clock_fall -max 22.400 $MISO_INPUT_B +set_input_delay -clock [get_clocks pl_spi_rb_clk_b] -clock_fall -min 0.000 $MISO_INPUT_B + +# Since the input delay span is clearly more than a period of the radio_clk, we need to +# add a multicycle path here as well to define the clock divider ratio. The MISO data +# is driven on the falling edge of the SPI clock and captured on the rising edge, so we +# only have one half of a SPI clock cycle for our setup. Hold is left alone and is OK +# as-is due to the delays in the CPLD and board. +set SETUP_CYCLES [expr {$PL_SPI_RB_DIVIDE_VAL / 2}] +set HOLD_CYCLES 0 +set_multicycle_path -setup -from [get_clocks pl_spi_rb_clk_a] -through $MISO_INPUT_A \ + $SETUP_CYCLES +set_multicycle_path -hold -from [get_clocks pl_spi_rb_clk_a] -through $MISO_INPUT_A -end \ + [expr {$SETUP_CYCLES + $HOLD_CYCLES - 1}] +set_multicycle_path -setup -from [get_clocks pl_spi_rb_clk_b] -through $MISO_INPUT_B \ + $SETUP_CYCLES +set_multicycle_path -hold -from [get_clocks pl_spi_rb_clk_b] -through $MISO_INPUT_B -end \ + [expr {$SETUP_CYCLES + $HOLD_CYCLES - 1}] + +#******************************************************************************* +## SYSREF/SYNC JESD Timing +# +# SYNC is async, SYSREF is tightly timed. + +# The SYNC output (to ADC) for both DBs is governed by the JESD cores, which are solely +# driven by DB-A clock... but it is an asynchronous signal so we use the async_out_clk. +set_output_delay -clock [get_clocks async_out_clk] 0.000 [get_ports DB*_ADC_SYNCB_P] +set_max_delay -to [get_ports DB*_ADC_SYNCB_P] 50.000 +set_min_delay -to [get_ports DB*_ADC_SYNCB_P] 0.000 + +# The SYNC input (from DAC) for both DBs is received by the DB-A clock inside the JESD +# cores... but again, it is asynchronous and therefore uses the async_in_clk. +set_input_delay -clock [get_clocks async_in_clk] 0.000 [get_ports DB*_DAC_SYNCB_P] +set_max_delay -from [get_ports DB*_DAC_SYNCB_P] 50.000 +set_min_delay -from [get_ports DB*_DAC_SYNCB_P] 0.000 + +# SYSREF is driven by the LMK directly to the FPGA. Timing analysis was performed once +# for the worst-case numbers across both DBs to produce one set of numbers for both DBs. +# Since we easily meet setup and hold in Vivado, then this is an acceptable approach. +# SYSREF is captured by the local clock from each DB, so we have two sets of constraints. +set_input_delay -clock fpga_clk_a_v -min -0.479 [get_ports DBA_FPGA_SYSREF_*] +set_input_delay -clock fpga_clk_a_v -max 0.661 [get_ports DBA_FPGA_SYSREF_*] + +set_input_delay -clock fpga_clk_b_v -min -0.479 [get_ports DBB_FPGA_SYSREF_*] +set_input_delay -clock fpga_clk_b_v -max 0.661 [get_ports DBB_FPGA_SYSREF_*] + + +#******************************************************************************* +## PPS Timing + +# Due to the N3xx synchronization and clocking structure, the PPS output is driven from +# the Sample Clock domain instead of the input Reference Clock. Constrain the output as +# tightly as possible to accurately mimic the internal Sample Clock timing. +set SETUP_SKEW 2.0 +set HOLD_SKEW -0.5 +set_output_delay -clock [get_clocks fpga_clk_a_v] -max -$SETUP_SKEW [get_ports REF_1PPS_OUT] +set_output_delay -clock [get_clocks fpga_clk_a_v] -min $HOLD_SKEW [get_ports REF_1PPS_OUT] +set_multicycle_path -setup -to [get_ports REF_1PPS_OUT] -start 0 +set_multicycle_path -hold -to [get_ports REF_1PPS_OUT] -1 + +#******************************************************************************* +### Async I/Os +set DB_ASYNC_OUTPUTS [get_ports { + DB*_MODULE_PWR_ENABLE + DB*_RF_PWR_ENABLE + DB*_CLKDIST_SYNC + DB*_ATR_TX + DB*_ATR_RX + DB*_TXRX_SW_CTRL_1 + DB*_TXRX_SW_CTRL_2 + DB*_LED_RX + DB*_LED_RX2 + DB*_LED_TX + QSFP_I2C_* +}] +set_output_delay -clock [get_clocks async_out_clk] 0.000 $DB_ASYNC_OUTPUTS +set_max_delay -to $DB_ASYNC_OUTPUTS 50.000 +set_min_delay -to $DB_ASYNC_OUTPUTS 0.000 + +set_input_delay -clock [get_clocks async_in_clk] 0.000 [get_ports QSFP_I2C_*] +set_max_delay -from [get_ports QSFP_I2C_*] 50.000 +set_min_delay -from [get_ports QSFP_I2C_*] 0.000 + +#******************************************************************************* +## JTAG + +## MAX 10 JTAG TDI setup: 2 ns +## MAX 10 JTAG TMS setup: 3 ns +## MAX 10 JTAG hold: 10 ns +## MAX 10 JTAG clk-to-q: 18 ns +## Board delay: < 1.5 ns +## +## Setup time = Board delay + TMS setup = 3 ns + 1.5 ns = 4.5 ns +## Hold time = Board delay + TMS hold = 1.5 ns + 10 ns = 11.5 ns +## Overconstrain output delay and keep skew to +/- 8 ns +## +## Input delay = 2x Board delay + clk-to-q = 3 ns + 18 ns = 21 ns + +# Constrain outputs for skew, with same latch/launch edge: +set_output_delay -clock [get_clocks dba_jtag_tck] -max -4.0 \ + [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}] +set_output_delay -add_delay -clock_fall -clock [get_clocks dba_jtag_tck] -max -4.0 \ + [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}] +set_output_delay -clock [get_clocks dba_jtag_tck] -min 4.0 \ + [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}] +set_output_delay -add_delay -clock_fall -clock [get_clocks dba_jtag_tck] -min 4.0 \ + [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}] +set_output_delay -clock [get_clocks dbb_jtag_tck] -max -4.0 \ + [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}] +set_output_delay -add_delay -clock_fall -clock [get_clocks dbb_jtag_tck] -max -4.0 \ + [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}] +set_output_delay -clock [get_clocks dbb_jtag_tck] -min 4.0 \ + [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}] +set_output_delay -add_delay -clock_fall -clock [get_clocks dbb_jtag_tck] -min 4.0 \ + [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}] +# Finally, make both the setup and hold checks use the same launching and latching edges. +set_multicycle_path -setup -from [get_clocks clk40] -to [get_clocks dba_jtag_tck] -start 0 +set_multicycle_path -hold -from [get_clocks clk40] -to [get_clocks dba_jtag_tck] -1 +set_multicycle_path -setup -from [get_clocks clk40] -to [get_clocks dbb_jtag_tck] -start 0 +set_multicycle_path -hold -from [get_clocks clk40] -to [get_clocks dbb_jtag_tck] -1 + +set_input_delay -clock [get_clocks dba_jtag_tck] -clock_fall -max 21 \ + [get_ports DBA_CPLD_JTAG_TDO] +set_input_delay -clock [get_clocks dba_jtag_tck] -clock_fall -min 0 \ + [get_ports DBA_CPLD_JTAG_TDO] +set_input_delay -clock [get_clocks dbb_jtag_tck] -clock_fall -max 21 \ + [get_ports DBB_CPLD_JTAG_TDO] +set_input_delay -clock [get_clocks dbb_jtag_tck] -clock_fall -min 0 \ + [get_ports DBB_CPLD_JTAG_TDO] +# Inputs have setup checks relative to half a period of TCK (launch on fall, +# latch on rise). Actual latch clock is faster, so push back setup and hold +# checks to match. +set_multicycle_path -setup -from [get_clocks dba_jtag_tck] \ + -through [get_ports DBA_CPLD_JTAG_TDO] \ + [expr {$DB_JTAG_DIVISOR / 2}] +set_multicycle_path -end -hold -from [get_clocks dba_jtag_tck] \ + -through [get_ports DBA_CPLD_JTAG_TDO] \ + [expr {$DB_JTAG_DIVISOR - 1}] +set_multicycle_path -setup -from [get_clocks dbb_jtag_tck] \ + -through [get_ports DBB_CPLD_JTAG_TDO] \ + [expr {$DB_JTAG_DIVISOR / 2}] +set_multicycle_path -end -hold -from [get_clocks dbb_jtag_tck] \ + -through [get_ports DBB_CPLD_JTAG_TDO] \ + [expr {$DB_JTAG_DIVISOR - 1}] |
