diff options
| author | Ashish Chaudhari <ashish@ettus.com> | 2014-08-13 17:16:33 -0700 | 
|---|---|---|
| committer | Ashish Chaudhari <ashish@ettus.com> | 2014-08-13 17:16:33 -0700 | 
| commit | 505c1d84fa7c53c0c640fab73b88c164671c7b91 (patch) | |
| tree | 1d242e6a671d85ba34aca346f07de8b1ab363d12 /host/lib | |
| parent | 628826f549537df9532546fc26109a4ab8da76ff (diff) | |
| download | uhd-505c1d84fa7c53c0c640fab73b88c164671c7b91.tar.gz uhd-505c1d84fa7c53c0c640fab73b88c164671c7b91.tar.bz2 uhd-505c1d84fa7c53c0c640fab73b88c164671c7b91.zip  | |
ad9361: Fixed MSVC build issues
Diffstat (limited to 'host/lib')
| -rw-r--r-- | host/lib/usrp/common/ad9361_driver/ad9361_device.cpp | 3823 | ||||
| -rw-r--r-- | host/lib/usrp/common/ad9361_driver/ad9361_device.h | 250 | 
2 files changed, 2039 insertions, 2034 deletions
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp index ead4c6619..c0cc285e2 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp +++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp @@ -1,1909 +1,1914 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#include "ad9361_filter_taps.h" -#include "ad9361_gain_tables.h" -#include "ad9361_synth_lut.h" -#include "ad9361_client.h" -#include "ad9361_device.h" -#include <cstring> -#include <cmath> -#include <uhd/exception.hpp> -#include <uhd/utils/log.hpp> -#include <boost/date_time/posix_time/posix_time.hpp> -#include <boost/thread/thread.hpp> -#include <boost/scoped_array.hpp> -#include <boost/format.hpp> - -//////////////////////////////////////////////////////////// -// the following macros evaluate to a compile time constant -// macros By Tom Torfs - donated to the public domain - -/* turn a numeric literal into a hex constant -(avoids problems with leading zeroes) -8-bit constants max value 0x11111111, always fits in unsigned long -*/ -#define HEX__(n) 0x##n##LU - -/* 8-bit conversion function */ -#define B8__(x) ((x&0x0000000FLU)?1:0) \ -+((x&0x000000F0LU)?2:0) \ -+((x&0x00000F00LU)?4:0) \ -+((x&0x0000F000LU)?8:0) \ -+((x&0x000F0000LU)?16:0) \ -+((x&0x00F00000LU)?32:0) \ -+((x&0x0F000000LU)?64:0) \ -+((x&0xF0000000LU)?128:0) - -/* for upto 8-bit binary constants */ -#define B8(d) ((unsigned char)B8__(HEX__(d))) -//////////////////////////////////////////////////////////// - - -namespace uhd { namespace usrp { - -/* This is a simple comparison for very large double-precision floating - * point numbers. It is used to prevent re-tunes for frequencies that are - * the same but not 'exactly' because of data precision issues. */ -// TODO: see if we can avoid the need for this function -int freq_is_nearly_equal(double a, double b) { -    return std::max(a,b) - std::min(a,b) < 1; -} - -/*********************************************************************** - * Filter functions - **********************************************************************/ - -/* This function takes in the calculated maximum number of FIR taps, and - * returns a number of taps that makes AD9361 happy. */ -int get_num_taps(int max_num_taps) { - -    int num_taps = 0; -    int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; -    int i; -    for(i = 1; i < 8; i++) { -        if(max_num_taps >= num_taps_list[i]) { -            continue; -        } else { -            num_taps = num_taps_list[i - 1]; -            break; -        } -    } if(num_taps == 0) { num_taps = 128; } - -    return num_taps; -} - -/* Program either the RX or TX FIR filter. - * - * The process is the same for both filters, but the function must be told - * how many taps are in the filter, and given a vector of the taps - * themselves.  */ - -void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs) -{ -    boost::uint16_t base; - -    /* RX and TX filters use largely identical sets of programming registers. -     Select the appropriate bank of registers here. */ -    if (direction == RX) { -        base = 0x0f0; -    } else { -        base = 0x060; -    } - -    /* Encode number of filter taps for programming register */ -    boost::uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; - -    /* Turn on the filter clock. */ -    _io_iface->poke8(base + 5, reg_numtaps | 0x1a); -    boost::this_thread::sleep(boost::posix_time::milliseconds(1)); - -    /* Zero the unused taps just in case they have stale data */ -    int addr; -    for (addr = num_taps; addr < 128; addr++) { -        _io_iface->poke8(base + 0, addr); -        _io_iface->poke8(base + 1, 0x0); -        _io_iface->poke8(base + 2, 0x0); -        _io_iface->poke8(base + 5, reg_numtaps | 0x1e); -        _io_iface->poke8(base + 4, 0x00); -        _io_iface->poke8(base + 4, 0x00); -    } - -    /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */ -    for (addr = 0; addr < num_taps; addr++) { -        _io_iface->poke8(base + 0, addr); -        _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff); -        _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff); -        _io_iface->poke8(base + 5, reg_numtaps | 0x1e); -        _io_iface->poke8(base + 4, 0x00); -        _io_iface->poke8(base + 4, 0x00); -    } - -    /* UG-671 states (page 25) (paraphrased and clarified): -     " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high. -     Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally -     before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table" -     */ - -    _io_iface->poke8(base + 5, reg_numtaps | 0x1A); -    if (direction == RX) { -        _io_iface->poke8(base + 5, reg_numtaps | 0x18); -        _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/ -    } else { -        _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/ -    } -} - - -/* Program the RX FIR Filter. */ -void ad9361_device_t::_setup_rx_fir(size_t num_taps) -{ -    boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]); -    for (size_t i = 0; i < num_taps; i++) { -        switch (num_taps) { -        case 128: -            coeffs[i] = boost::uint16_t(hb127_coeffs[i]); -            break; -        case 96: -            coeffs[i] = boost::uint16_t(hb95_coeffs[i]); -            break; -        case 64: -            coeffs[i] = boost::uint16_t(hb63_coeffs[i]); -            break; -        case 48: -            coeffs[i] = boost::uint16_t(hb47_coeffs[i]); -            break; -        default: -            throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps."); -        } -    } - -    _program_fir_filter(RX, num_taps, coeffs.get()); -} - -/* Program the TX FIR Filter. */ -void ad9361_device_t::_setup_tx_fir(size_t num_taps) -{ -    boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]); -    for (size_t i = 0; i < num_taps; i++) { -        switch (num_taps) { -        case 128: -            coeffs[i] = boost::uint16_t(hb127_coeffs[i]); -            break; -        case 96: -            coeffs[i] = boost::uint16_t(hb95_coeffs[i]); -            break; -        case 64: -            coeffs[i] = boost::uint16_t(hb63_coeffs[i]); -            break; -        case 48: -            coeffs[i] = boost::uint16_t(hb47_coeffs[i]); -            break; -        default: -            throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps."); -        } -    } - -    _program_fir_filter(TX, num_taps, coeffs.get()); -} - -/*********************************************************************** - * Calibration functions - ***********************************************************************/ - -/* Calibrate and lock the BBPLL. - * - * This function should be called anytime the BBPLL is tuned. */ -void ad9361_device_t::_calibrate_lock_bbpll() -{ -    _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration -    _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit - -    /* Increase BBPLL KV and phase margin. */ -    _io_iface->poke8(0x04c, 0x86); -    _io_iface->poke8(0x04d, 0x01); -    _io_iface->poke8(0x04d, 0x05); - -    /* Wait for BBPLL lock. */ -    size_t count = 0; -    while (!(_io_iface->peek8(0x05e) & 0x80)) { -        if (count > 1000) { -            throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(2)); -    } -} - -/* Calibrate the synthesizer charge pumps. - * - * Technically, this calibration only needs to be done once, at device - * initialization. */ -void ad9361_device_t::_calibrate_synth_charge_pumps() -{ -    /* If this function ever gets called, and the ENSM isn't already in the -     * ALERT state, then something has gone horribly wrong. */ -    if ((_io_iface->peek8(0x017) & 0x0F) != 5) { -        throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal"); -    } - -    /* Calibrate the RX synthesizer charge pump. */ -    size_t count = 0; -    _io_iface->poke8(0x23d, 0x04); -    while (!(_io_iface->peek8(0x244) & 0x80)) { -        if (count > 5) { -            throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(1)); -    } -    _io_iface->poke8(0x23d, 0x00); - -    /* Calibrate the TX synthesizer charge pump. */ -    count = 0; -    _io_iface->poke8(0x27d, 0x04); -    while (!(_io_iface->peek8(0x284) & 0x80)) { -        if (count > 5) { -            throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(1)); -    } -    _io_iface->poke8(0x27d, 0x00); -} - -/* Calibrate the analog BB RX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the RX sample - * rate. */ -double ad9361_device_t::_calibrate_baseband_rx_analog_filter() -{ -    /* For filter tuning, baseband BW is half the complex BW, and must be -     * between 28e6 and 0.2e6. */ -    double bbbw = _baseband_bw / 2.0; -    if (bbbw > 28e6) { -        bbbw = 28e6; -    } else if (bbbw < 0.20e6) { -        bbbw = 0.20e6; -    } - -    double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2); -    _rx_bbf_tunediv = std::min<boost::uint16_t>(511, std::ceil<boost::uint16_t>(_bbpll_freq / rxtune_clk)); -    _regs.bbftune_config = (_regs.bbftune_config & 0xFE) -            | ((_rx_bbf_tunediv >> 8) & 0x0001); - -    double bbbw_mhz = bbbw / 1e6; -    double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125; -    boost::uint8_t bbbw_khz = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(temp + 0.5))); - -    /* Set corner frequencies and dividers. */ -    _io_iface->poke8(0x1fb, (boost::uint8_t) (bbbw_mhz)); -    _io_iface->poke8(0x1fc, bbbw_khz); -    _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF)); -    _io_iface->poke8(0x1f9, _regs.bbftune_config); - -    /* RX Mix Voltage settings - only change with apps engineer help. */ -    _io_iface->poke8(0x1d5, 0x3f); -    _io_iface->poke8(0x1c0, 0x03); - -    /* Enable RX1 & RX2 filter tuners. */ -    _io_iface->poke8(0x1e2, 0x02); -    _io_iface->poke8(0x1e3, 0x02); - -    /* Run the calibration! */ -    size_t count = 0; -    _io_iface->poke8(0x016, 0x80); -    while (_io_iface->peek8(0x016) & 0x80) { -        if (count > 100) { -            throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(1)); -    } - -    /* Disable RX1 & RX2 filter tuners. */ -    _io_iface->poke8(0x1e2, 0x03); -    _io_iface->poke8(0x1e3, 0x03); - -    return bbbw; -} - -/* Calibrate the analog BB TX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the TX sample - * rate. */ -double ad9361_device_t::_calibrate_baseband_tx_analog_filter() -{ -    /* For filter tuning, baseband BW is half the complex BW, and must be -     * between 28e6 and 0.2e6. */ -    double bbbw = _baseband_bw / 2.0; -    if (bbbw > 20e6) { -        bbbw = 20e6; -    } else if (bbbw < 0.625e6) { -        bbbw = 0.625e6; -    } - -    double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2); -    boost::uint16_t txbbfdiv = std::min<boost::uint16_t>(511, (std::ceil<boost::uint16_t>(_bbpll_freq / txtune_clk))); -    _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE) -            | ((txbbfdiv >> 8) & 0x0001); - -    /* Program the divider values. */ -    _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF)); -    _io_iface->poke8(0x0d7, _regs.bbftune_mode); - -    /* Enable the filter tuner. */ -    _io_iface->poke8(0x0ca, 0x22); - -    /* Calibrate! */ -    size_t count = 0; -    _io_iface->poke8(0x016, 0x40); -    while (_io_iface->peek8(0x016) & 0x40) { -        if (count > 100) { -            throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE"); -            break; -        } - -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(1)); -    } - -    /* Disable the filter tuner. */ -    _io_iface->poke8(0x0ca, 0x26); - -    return bbbw; -} - -/* Calibrate the secondary TX filter. - * - * This filter also depends on the TX sample rate, so if a rate change is - * made, the previous calibration will no longer be valid. */ -void ad9361_device_t::_calibrate_secondary_tx_filter() -{ -    /* For filter tuning, baseband BW is half the complex BW, and must be -     * between 20e6 and 0.53e6. */ -    double bbbw = _baseband_bw / 2.0; -    if (bbbw > 20e6) { -        bbbw = 20e6; -    } else if (bbbw < 0.53e6) { -        bbbw = 0.53e6; -    } - -    double bbbw_mhz = bbbw / 1e6; - -    /* Start with a resistor value of 100 Ohms. */ -    int res = 100; - -    /* Calculate target corner frequency. */ -    double corner_freq = 5 * bbbw_mhz * 2 * M_PI; - -    /* Iterate through RC values to determine correct combination. */ -    int cap = 0; -    int i; -    for (i = 0; i <= 3; i++) { -        cap = (std::floor<int>(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12))) -                - 12; - -        if (cap <= 63) { -            break; -        } - -        res = res * 2; -    } -    if (cap > 63) { -        cap = 63; -    } - -    boost::uint8_t reg0d0, reg0d1, reg0d2; - -    /* Translate baseband bandwidths to register settings. */ -    if ((bbbw_mhz * 2) <= 9) { -        reg0d0 = 0x59; -    } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { -        reg0d0 = 0x56; -    } else if ((bbbw_mhz * 2) > 24) { -        reg0d0 = 0x57; -    } else { -        throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); -        reg0d0 = 0x00; -    } - -    /* Translate resistor values to register settings. */ -    if (res == 100) { -        reg0d1 = 0x0c; -    } else if (res == 200) { -        reg0d1 = 0x04; -    } else if (res == 400) { -        reg0d1 = 0x03; -    } else if (res == 800) { -        reg0d1 = 0x01; -    } else { -        reg0d1 = 0x0c; -    } - -    reg0d2 = cap; - -    /* Program the above-calculated values. Sweet. */ -    _io_iface->poke8(0x0d2, reg0d2); -    _io_iface->poke8(0x0d1, reg0d1); -    _io_iface->poke8(0x0d0, reg0d0); -} - -/* Calibrate the RX TIAs. - * - * Note that the values in the TIA register, after calibration, vary with - * the RX gain settings. */ -void ad9361_device_t::_calibrate_rx_TIAs() -{ -    boost::uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F; -    boost::uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F; -    boost::uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07; -    boost::uint8_t reg1db = 0x00; -    boost::uint8_t reg1dc = 0x00; -    boost::uint8_t reg1dd = 0x00; -    boost::uint8_t reg1de = 0x00; -    boost::uint8_t reg1df = 0x00; - -    /* For calibration, baseband BW is half the complex BW, and must be -     * between 28e6 and 0.2e6. */ -    double bbbw = _baseband_bw / 2.0; -    if (bbbw > 20e6) { -        bbbw = 20e6; -    } else if (bbbw < 0.20e6) { -        bbbw = 0.20e6; -    } -    double ceil_bbbw_mhz = std::ceil(bbbw / 1e6); - -    /* Do some crazy resistor and capacitor math. */ -    int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; -    int R2346 = 18300 * (reg1e6 & 0x07); -    double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; - -    /* Translate baseband BW to register settings. */ -    if (ceil_bbbw_mhz <= 3) { -        reg1db = 0xe0; -    } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { -        reg1db = 0x60; -    } else if (ceil_bbbw_mhz > 10) { -        reg1db = 0x20; -    } else { -        throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); -    } - -    if (CTIA_fF > 2920) { -        reg1dc = 0x40; -        reg1de = 0x40; -        boost::uint8_t temp = (boost::uint8_t) std::min<boost::uint8_t>(127, -                (std::floor<boost::uint8_t>(0.5 + ((CTIA_fF - 400.0) / 320.0)))); -        reg1dd = temp; -        reg1df = temp; -    } else { -        boost::uint8_t temp = std::floor<boost::uint8_t>(0.5 + ((CTIA_fF - 400.0) / 40.0)) -                + 0x40; -        reg1dc = temp; -        reg1de = temp; -        reg1dd = 0; -        reg1df = 0; -    } - -    /* w00t. Settings calculated. Program them and roll out. */ -    _io_iface->poke8(0x1db, reg1db); -    _io_iface->poke8(0x1dd, reg1dd); -    _io_iface->poke8(0x1df, reg1df); -    _io_iface->poke8(0x1dc, reg1dc); -    _io_iface->poke8(0x1de, reg1de); -} - -/* Setup the AD9361 ADC. - * - * There are 40 registers that control the ADC's operation, most of the - * values of which must be derived mathematically, dependent on the current - * setting of the BBPLL. Note that the order of calculation is critical, as - * some of the 40 registers depend on the values in others. */ -void ad9361_device_t::_setup_adc() -{ -    double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \ -                  / (1.4 * 2 * M_PI); - -    /* For calibration, baseband BW is half the complex BW, and must be -     * between 28e6 and 0.2e6. */ -    if(bbbw_mhz > 28) { -        bbbw_mhz = 28; -    } else if (bbbw_mhz < 0.20) { -        bbbw_mhz = 0.20; -    } - -    boost::uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F; -    boost::uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F; -    boost::uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07; - -    double fsadc = _adcclock_freq / 1e6; - -    /* Sort out the RC time constant for our baseband bandwidth... */ -    double rc_timeconst = 0.0; -    if(bbbw_mhz < 18) { -        rc_timeconst = (1 / ((1.4 * 2 * M_PI) \ -                            * (18300 * rxbbf_r2346) -                            * ((160e-15 * rxbbf_c3_msb) -                                + (10e-15 * rxbbf_c3_lsb) + 140e-15) -                            * (bbbw_mhz * 1e6))); -    } else { -        rc_timeconst = (1 / ((1.4 * 2 * M_PI) \ -                            * (18300 * rxbbf_r2346) -                            * ((160e-15 * rxbbf_c3_msb) -                                + (10e-15 * rxbbf_c3_lsb) + 140e-15) -                            * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); -    } - -    double scale_res = sqrt(1 / rc_timeconst); -    double scale_cap = sqrt(1 / rc_timeconst); - -    double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192; -    double maxsnr = 640 / 160; - -    /* Calculate the values for all 40 settings registers. -     * -     * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ -    boost::uint8_t data[40]; -    data[0] = 0;    data[1] = 0; data[2] = 0; data[3] = 0x24; -    data[4] = 0x24; data[5] = 0; data[6] = 0; -    data[7] = std::min<boost::uint8_t>(124, (std::floor<boost::uint8_t>(-0.5 -                    + (80.0 * scale_snr * scale_res -                    * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0)))))); -    double data007 = data[7]; -    data[8] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(0.5 -                    + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) -                    / (scale_res * scale_cap)))))); -    data[10] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(-0.5 + (77.0 * scale_res -                    * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0)))))); -    double data010 = data[10]; -    data[9] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(0.8 * data010))); -    data[11] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(0.5 -                    + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) -                    / (scale_res * scale_cap)))))); -    data[12] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(-0.5 -                    + (80.0 * scale_res * std::min<double>(1.0, -                    sqrt(maxsnr * fsadc / 640.0)))))); -    double data012 = data[12]; -    data[13] = std::min<boost::uint8_t>(255, (std::floor<boost::uint8_t>(-1.5 -                    + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) -                    / (scale_res * scale_cap)))))); -    data[14] = 21 * (std::floor<boost::uint8_t>(0.1 * 640.0 / fsadc)); -    data[15] = std::min<boost::uint8_t>(127, (1.025 * data007)); -    double data015 = data[15]; -    data[16] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data015 -                    * (0.98 + (0.02 * std::max<double>(1.0, -                    (640.0 / fsadc) / maxsnr))))))); -    data[17] = data[15]; -    data[18] = std::min<boost::uint8_t>(127, (0.975 * (data010))); -    double data018 = data[18]; -    data[19] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data018 -                    * (0.98 + (0.02 * std::max<double>(1.0, -                    (640.0 / fsadc) / maxsnr))))))); -    data[20] = data[18]; -    data[21] = std::min<boost::uint8_t>(127, (0.975 * data012)); -    double data021 = data[21]; -    data[22] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>((data021 -                    * (0.98 + (0.02 * std::max<double>(1.0, -                    (640.0 / fsadc) / maxsnr))))))); -    data[23] = data[21]; -    data[24] = 0x2e; -    data[25] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0, -                    63.0 * (fsadc / 640.0))); -    data[26] = std::floor<boost::uint8_t>(std::min<double>(63.0, 63.0 * (fsadc / 640.0) -                    * (0.92 + (0.08 * (640.0 / fsadc))))); -    data[27] = std::floor<boost::uint8_t>(std::min<double>(63.0, -                    32.0 * sqrt(fsadc / 640.0))); -    data[28] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0, -                    63.0 * (fsadc / 640.0))); -    data[29] = std::floor<boost::uint8_t>(std::min<double>(63.0, -                    63.0 * (fsadc / 640.0) -                    * (0.92 + (0.08 * (640.0 / fsadc))))); -    data[30] = std::floor<boost::uint8_t>(std::min<double>(63.0, -                    32.0 * sqrt(fsadc / 640.0))); -    data[31] = std::floor<boost::uint8_t>(128.0 + std::min<double>(63.0, -                    63.0 * (fsadc / 640.0))); -    data[32] = std::floor<boost::uint8_t>(std::min<double>(63.0, -                    63.0 * (fsadc / 640.0) * (0.92 -                    + (0.08 * (640.0 / fsadc))))); -    data[33] = std::floor<boost::uint8_t>(std::min<double>(63.0, -                    63.0 * sqrt(fsadc / 640.0))); -    data[34] = std::min<boost::uint8_t>(127, (std::floor<boost::uint8_t>(64.0 -                    * sqrt(fsadc / 640.0)))); -    data[35] = 0x40; -    data[36] = 0x40; -    data[37] = 0x2c; -    data[38] = 0x00; -    data[39] = 0x00; - -    /* Program the registers! */ -    for(size_t i = 0; i < 40; i++) { -        _io_iface->poke8(0x200+i, data[i]); -    } -} - -/* Calibrate the baseband DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function! */ -void ad9361_device_t::_calibrate_baseband_dc_offset() -{ -    _io_iface->poke8(0x193, 0x3f); // Calibration settings -    _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient -    //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift -    _io_iface->poke8(0x194, 0x01); // More calibration settings - -    /* Start that calibration, baby. */ -    size_t count = 0; -    _io_iface->poke8(0x016, 0x01); -    while (_io_iface->peek8(0x016) & 0x01) { -        if (count > 100) { -            throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(5)); -    } -} - -/* Calibrate the RF DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function. */ -void ad9361_device_t::_calibrate_rf_dc_offset() -{ -    /* Some settings are frequency-dependent. */ -    if (_rx_freq < 4e9) { -        _io_iface->poke8(0x186, 0x32); // RF DC Offset count -        _io_iface->poke8(0x187, 0x24); -        _io_iface->poke8(0x188, 0x05); -    } else { -        _io_iface->poke8(0x186, 0x28); // RF DC Offset count -        _io_iface->poke8(0x187, 0x34); -        _io_iface->poke8(0x188, 0x06); -    } - -    _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count -    _io_iface->poke8(0x18b, 0x83); -    _io_iface->poke8(0x189, 0x30); - -    /* Run the calibration! */ -    size_t count = 0; -    _io_iface->poke8(0x016, 0x02); -    while (_io_iface->peek8(0x016) & 0x02) { -        if (count > 100) { -            throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(50)); -    } -} - -/* Start the RX quadrature calibration. - * - * Note that we are using AD9361's 'tracking' feature for RX quadrature - * calibration, so once it starts it continues to free-run during operation. - * It should be re-run for large frequency changes. */ -void ad9361_device_t::_calibrate_rx_quadrature() -{ -    /* Configure RX Quadrature calibration settings. */ -    _io_iface->poke8(0x168, 0x03); // Set tone level for cal -    _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal -    _io_iface->poke8(0x16a, 0x75); // Set Kexp phase -    _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude -    _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode -    _io_iface->poke8(0x18b, 0xad); -} - -/* TX quadtrature calibration routine. - * - * The TX quadrature needs to be done twice, once for each TX chain, with - * only one register change in between. Thus, this function enacts the - * calibrations, and it is called from calibrate_tx_quadrature. */ -void ad9361_device_t::_tx_quadrature_cal_routine() { -    /* This is a weird process, but here is how it works: -     * 1) Read the calibrated NCO frequency bits out of 0A3. -     * 2) Write the two bits to the RX NCO freq part of 0A0. -     * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? -     * 4) Update only the TX NCO freq bits in 0A3. -     * 5) Profit (I hope). */ -    boost::uint8_t reg0a3 = _io_iface->peek8(0x0a3); -    boost::uint8_t nco_freq = (reg0a3 & 0xC0); -    _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1)); -    reg0a3 = _io_iface->peek8(0x0a3); -    _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq); - -    /* It is possible to reach a configuration that won't operate correctly, -     * where the two test tones used for quadrature calibration are outside -     * of the RX BBF, and therefore don't make it to the ADC. We will check -     * for that scenario here. */ -    double max_cal_freq = (((_baseband_bw * _tfir_factor) -            * ((nco_freq >> 6) + 1)) / 32) * 2; -    double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW -    if (bbbw > 28e6) { -        bbbw = 28e6; -    } else if (bbbw < 0.20e6) { -        bbbw = 0.20e6; -    } -    if (max_cal_freq > bbbw) -        throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw"); - -    _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient -    _io_iface->poke8(0x0a9, 0xff); // Cal count -    _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp -    _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV -    _io_iface->poke8(0x0a6, 0x01); - -    /* The gain table index used for calibration must be adjusted for the -     * mid-table to get a TIA index = 1 and LPF index = 0. */ -    if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) { -        _io_iface->poke8(0x0aa, 0x22); // Cal gain table index -    } else { -        _io_iface->poke8(0x0aa, 0x25); // Cal gain table index -    } - -    _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut -    _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode) - -    /* First, calibrate the baseband DC offset. */ -    _calibrate_baseband_dc_offset(); - -    /* Second, calibrate the RF DC offset. */ -    _calibrate_rf_dc_offset(); - -    /* Now, calibrate the TX quadrature! */ -    size_t count = 0; -    _io_iface->poke8(0x016, 0x10); -    while (_io_iface->peek8(0x016) & 0x10) { -        if (count > 100) { -            throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure"); -            break; -        } -        count++; -        boost::this_thread::sleep(boost::posix_time::milliseconds(10)); -    } -} - -/* Run the TX quadrature calibration. - * - * Note that from within this function we are also triggering the baseband - * and RF DC calibrations. */ -void ad9361_device_t::_calibrate_tx_quadrature() -{ -    /* Make sure we are, in fact, in the ALERT state. If not, something is -     * terribly wrong in the driver execution flow. */ -    if ((_io_iface->peek8(0x017) & 0x0F) != 5) { -        throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT"); -    } - -    /* Turn off free-running and continuous calibrations. Note that this -     * will get turned back on at the end of the RX calibration routine. */ -    _io_iface->poke8(0x169, 0xc0); - -    /* This calibration must be done in a certain order, and for both TX_A -     * and TX_B, separately. Store the original setting so that we can -     * restore it later. */ -    boost::uint8_t orig_reg_inputsel = _regs.inputsel; - -    /*********************************************************************** -     * TX1/2-A Calibration -     **********************************************************************/ -    _regs.inputsel = _regs.inputsel & 0xBF; -    _io_iface->poke8(0x004, _regs.inputsel); - -    _tx_quadrature_cal_routine(); - -    /*********************************************************************** -     * TX1/2-B Calibration -     **********************************************************************/ -    _regs.inputsel = _regs.inputsel | 0x40; -    _io_iface->poke8(0x004, _regs.inputsel); - -    _tx_quadrature_cal_routine(); - -    /*********************************************************************** -     * fin -     **********************************************************************/ -    _regs.inputsel = orig_reg_inputsel; -    _io_iface->poke8(0x004, orig_reg_inputsel); -} - - -/*********************************************************************** - * Other Misc Setup Functions - ***********************************************************************/ - -/* Program the mixer gain table. - * - * Note that this table is fixed for all frequency settings. */ -void ad9361_device_t::_program_mixer_gm_subtable() -{ -    boost::uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, -            0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 }; -    boost::uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31, -            0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E }; - -    /* Start the clock. */ -    _io_iface->poke8(0x13f, 0x02); - -    /* Program the GM Sub-table. */ -    int i; -    for (i = 15; i >= 0; i--) { -        _io_iface->poke8(0x138, i); -        _io_iface->poke8(0x139, gain[(15 - i)]); -        _io_iface->poke8(0x13A, 0x00); -        _io_iface->poke8(0x13B, gm[(15 - i)]); -        _io_iface->poke8(0x13F, 0x06); -        _io_iface->poke8(0x13C, 0x00); -        _io_iface->poke8(0x13C, 0x00); -    } - -    /* Clear write bit and stop clock. */ -    _io_iface->poke8(0x13f, 0x02); -    _io_iface->poke8(0x13C, 0x00); -    _io_iface->poke8(0x13C, 0x00); -    _io_iface->poke8(0x13f, 0x00); -} - -/* Program the gain table. - * - * There are three different gain tables for different frequency ranges! */ -void ad9361_device_t::_program_gain_table() { -    /* Figure out which gain table we should be using for our current -     * frequency band. */ -    boost::uint8_t (*gain_table)[5] = NULL; -    boost::uint8_t new_gain_table; -    if (_rx_freq < 1300e6) { -        gain_table = gain_table_sub_1300mhz; -        new_gain_table = 1; -    } else if (_rx_freq < 4e9) { -        gain_table = gain_table_1300mhz_to_4000mhz; -        new_gain_table = 2; -    } else if (_rx_freq <= 6e9) { -        gain_table = gain_table_4000mhz_to_6000mhz; -        new_gain_table = 3; -    } else { -        throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value"); -        new_gain_table = 1; -    } - -    /* Only re-program the gain table if there has been a band change. */ -    if (_curr_gain_table == new_gain_table) { -        return; -    } else { -        _curr_gain_table = new_gain_table; -    } - -    /* Okay, we have to program a new gain table. Sucks, brah. Start the -     * gain table clock. */ -    _io_iface->poke8(0x137, 0x1A); - -    /* IT'S PROGRAMMING TIME. */ -    boost::uint8_t index = 0; -    for (; index < 77; index++) { -        _io_iface->poke8(0x130, index); -        _io_iface->poke8(0x131, gain_table[index][1]); -        _io_iface->poke8(0x132, gain_table[index][2]); -        _io_iface->poke8(0x133, gain_table[index][3]); -        _io_iface->poke8(0x137, 0x1E); -        _io_iface->poke8(0x134, 0x00); -        _io_iface->poke8(0x134, 0x00); -    } - -    /* Everything above the 77th index is zero. */ -    for (; index < 91; index++) { -        _io_iface->poke8(0x130, index); -        _io_iface->poke8(0x131, 0x00); -        _io_iface->poke8(0x132, 0x00); -        _io_iface->poke8(0x133, 0x00); -        _io_iface->poke8(0x137, 0x1E); -        _io_iface->poke8(0x134, 0x00); -        _io_iface->poke8(0x134, 0x00); -    } - -    /* Clear the write bit and stop the gain clock. */ -    _io_iface->poke8(0x137, 0x1A); -    _io_iface->poke8(0x134, 0x00); -    _io_iface->poke8(0x134, 0x00); -    _io_iface->poke8(0x137, 0x00); -} - -/* Setup gain control registers. - * - * This really only needs to be done once, at initialization. */ -void ad9361_device_t::_setup_gain_control() -{ -    _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select -    _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl -    _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size -    _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index -    _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time -    _io_iface->poke8(0x100, 0x6F); // Max Digital Gain -    _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold -    _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold -    _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold -    _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold -    _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index -    _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index -    _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index -    _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index -    _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index -    _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index -    _io_iface->poke8(0x114, 0x30); // Low Power Threshold -    _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit -    _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control -} - -/* Setup the RX or TX synthesizers. - * - * This setup depends on a fixed look-up table, which is stored in an - * included header file. The table is indexed based on the passed VCO rate. - */ -void ad9361_device_t::_setup_synth(direction_t direction, double vcorate) -{ -    /* The vcorates in the vco_index array represent lower boundaries for -     * rates. Once we find a match, we use that index to look-up the rest of -     * the register values in the LUT. */ -    int vcoindex = 0; -    for (size_t i = 0; i < 53; i++) { -        vcoindex = i; -        if (vcorate > vco_index[i]) { -            break; -        } -    } -    if (vcoindex > 53) -        throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53"); - -    /* Parse the values out of the LUT based on our calculated index... */ -    boost::uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; -    boost::uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; -    boost::uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; -    boost::uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; -    boost::uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; -    boost::uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; -    boost::uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; -    boost::uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; -    boost::uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; -    boost::uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; -    boost::uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; -    boost::uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; - -    /* ... annnd program! */ -    if (direction == RX) { -        _io_iface->poke8(0x23a, 0x40 | vco_output_level); -        _io_iface->poke8(0x239, 0xC0 | vco_varactor); -        _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3)); -        _io_iface->poke8(0x238, (vco_cal_offset << 3)); -        _io_iface->poke8(0x245, 0x00); -        _io_iface->poke8(0x251, vco_varactor_ref); -        _io_iface->poke8(0x250, 0x70); -        _io_iface->poke8(0x23b, 0x80 | charge_pump_curr); -        _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); -        _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); -        _io_iface->poke8(0x240, loop_filter_r3); -    } else if (direction == TX) { -        _io_iface->poke8(0x27a, 0x40 | vco_output_level); -        _io_iface->poke8(0x279, 0xC0 | vco_varactor); -        _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3)); -        _io_iface->poke8(0x278, (vco_cal_offset << 3)); -        _io_iface->poke8(0x285, 0x00); -        _io_iface->poke8(0x291, vco_varactor_ref); -        _io_iface->poke8(0x290, 0x70); -        _io_iface->poke8(0x27b, 0x80 | charge_pump_curr); -        _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); -        _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); -        _io_iface->poke8(0x280, loop_filter_r3); -    } else { -        throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH"); -    } -} - - -/* Tune the baseband VCO. - * - * This clock signal is what gets fed to the ADCs and DACs. This function is - * not exported outside of this file, and is invoked based on the rate - * fed to the public set_clock_rate function. */ -double ad9361_device_t::_tune_bbvco(const double rate) -{ -    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate; - -    /* Let's not re-tune to the same frequency over and over... */ -    if (freq_is_nearly_equal(rate, _req_coreclk)) { -        return _adcclock_freq; -    } - -    _req_coreclk = rate; - -    const double fref = 40e6; -    const int modulus = 2088960; -    const double vcomax = 1430e6; -    const double vcomin = 672e6; -    double vcorate; -    int vcodiv; - -    /* Iterate over VCO dividers until appropriate divider is found. */ -    int i = 1; -    for (; i <= 6; i++) { -        vcodiv = 1 << i; -        vcorate = rate * vcodiv; - -        if (vcorate >= vcomin && vcorate <= vcomax) -            break; -    } -    if (i == 7) -        throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate"); - -    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate; -    /* Fo = Fref * (Nint + Nfrac / mod) */ -    int nint = vcorate / fref; -    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref); -    int nfrac = lround(((vcorate / fref) - (double) nint) * (double) modulus); -    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus); -    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac; -    double actual_vcorate = fref -            * ((double) nint + ((double) nfrac / (double) modulus)); - -    /* Scale CP current according to VCO rate */ -    const double icp_baseline = 150e-6; -    const double freq_baseline = 1280e6; -    double icp = icp_baseline * (actual_vcorate / freq_baseline); -    int icp_reg = (icp / 25e-6) - 1; - -    _io_iface->poke8(0x045, 0x00);            // REFCLK / 1 to BBPLL -    _io_iface->poke8(0x046, icp_reg & 0x3F);  // CP current -    _io_iface->poke8(0x048, 0xe8);            // BBPLL loop filters -    _io_iface->poke8(0x049, 0x5b);            // BBPLL loop filters -    _io_iface->poke8(0x04a, 0x35);            // BBPLL loop filters - -    _io_iface->poke8(0x04b, 0xe0); -    _io_iface->poke8(0x04e, 0x10);            // Max accuracy - -    _io_iface->poke8(0x043, nfrac & 0xFF);         // Nfrac[7:0] -    _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF);  // Nfrac[15:8] -    _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] -    _io_iface->poke8(0x044, nint);                 // Nint - -    _calibrate_lock_bbpll(); - -    _regs.bbpll = (_regs.bbpll & 0xF8) | i; - -    _bbpll_freq = actual_vcorate; -    _adcclock_freq = (actual_vcorate / vcodiv); - -    return _adcclock_freq; -} - -/* This function re-programs all of the gains in the system. - * - * Because the gain values match to different gain indices based on the - * current operating band, this function can be called to update all gain - * settings to the appropriate index after a re-tune. */ -void ad9361_device_t::_reprogram_gains() -{ -    set_gain(RX, CHAIN_1,_rx1_gain); -    set_gain(RX, CHAIN_2,_rx2_gain); -    set_gain(TX, CHAIN_1,_tx1_gain); -    set_gain(TX, CHAIN_2,_tx2_gain); -} - -/* This is the internal tune function, not available for a host call. - * - * Calculate the VCO settings for the requested frquency, and then either - * tune the RX or TX VCO. */ -double ad9361_device_t::_tune_helper(direction_t direction, const double value) -{ -    /* The RFPLL runs from 6 GHz - 12 GHz */ -    const double fref = 80e6; -    const int modulus = 8388593; -    const double vcomax = 12e9; -    const double vcomin = 6e9; -    double vcorate; -    int vcodiv; - -    /* Iterate over VCO dividers until appropriate divider is found. */ -    int i; -    for (i = 0; i <= 6; i++) { -        vcodiv = 2 << i; -        vcorate = value * vcodiv; -        if (vcorate >= vcomin && vcorate <= vcomax) -            break; -    } -    if (i == 7) -        throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!"); - -    int nint = vcorate / fref; -    int nfrac = ((vcorate / fref) - nint) * modulus; - -    double actual_vcorate = fref * (nint + (double) (nfrac) / modulus); -    double actual_lo = actual_vcorate / vcodiv; - -    if (direction == RX) { - -        _req_rx_freq = value; - -        /* Set band-specific settings. */ -        if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) { -            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30; -        } else if ((value -                >= _client_params->get_band_edge(AD9361_RX_BAND0)) -                && (value -                        < _client_params->get_band_edge(AD9361_RX_BAND1))) { -            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C; -        } else if ((value -                >= _client_params->get_band_edge(AD9361_RX_BAND1)) -                && (value <= 6e9)) { -            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03; -        } else { -            throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH"); -        } - -        _io_iface->poke8(0x004, _regs.inputsel); - -        /* Store vcodiv setting. */ -        _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F); - -        /* Setup the synthesizer. */ -        _setup_synth(RX, actual_vcorate); - -        /* Tune!!!! */ -        _io_iface->poke8(0x233, nfrac & 0xFF); -        _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF); -        _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF); -        _io_iface->poke8(0x232, (nint >> 8) & 0xFF); -        _io_iface->poke8(0x231, nint & 0xFF); -        _io_iface->poke8(0x005, _regs.vcodivs); - -        /* Lock the PLL! */ -        boost::this_thread::sleep(boost::posix_time::milliseconds(2)); -        if ((_io_iface->peek8(0x247) & 0x02) == 0) { -            throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED"); -        } - -        _rx_freq = actual_lo; - -        return actual_lo; - -    } else { - -        _req_tx_freq = value; - -        /* Set band-specific settings. */ -        if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) { -            _regs.inputsel = _regs.inputsel | 0x40; -        } else if ((value -                >= _client_params->get_band_edge(AD9361_TX_BAND0)) -                && (value <= 6e9)) { -            _regs.inputsel = _regs.inputsel & 0xBF; -        } else { -            throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH"); -        } - -        _io_iface->poke8(0x004, _regs.inputsel); - -        /* Store vcodiv setting. */ -        _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4); - -        /* Setup the synthesizer. */ -        _setup_synth(TX, actual_vcorate); - -        /* Tune it, homey. */ -        _io_iface->poke8(0x273, nfrac & 0xFF); -        _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF); -        _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF); -        _io_iface->poke8(0x272, (nint >> 8) & 0xFF); -        _io_iface->poke8(0x271, nint & 0xFF); -        _io_iface->poke8(0x005, _regs.vcodivs); - -        /* Lock the PLL! */ -        boost::this_thread::sleep(boost::posix_time::milliseconds(2)); -        if ((_io_iface->peek8(0x287) & 0x02) == 0) { -            throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED"); -        } - -        _tx_freq = actual_lo; - -        return actual_lo; -    } -} - -/* Configure the various clock / sample rates in the RX and TX chains. - * - * Functionally, this function configures AD9361's RX and TX rates. For - * a requested TX & RX rate, it sets the interpolation & decimation filters, - * and tunes the VCO that feeds the ADCs and DACs. - */ -double ad9361_device_t::_setup_rates(const double rate) -{ -    /* If we make it into this function, then we are tuning to a new rate. -     * Store the new rate. */ -    _req_clock_rate = rate; - -    /* Set the decimation and interpolation values in the RX and TX chains. -     * This also switches filters in / out. Note that all transmitters and -     * receivers have to be turned on for the calibration portion of -     * bring-up, and then they will be switched out to reflect the actual -     * user-requested antenna selections. */ -    int divfactor = 0; -    _tfir_factor = 0; -    if (rate < 0.33e6) { -        // RX1 + RX2 enabled, 3, 2, 2, 4 -        _regs.rxfilt = B8(11101111); - -        // TX1 + TX2 enabled, 3, 2, 2, 4 -        _regs.txfilt = B8(11101111); - -        divfactor = 48; -        _tfir_factor = 2; -    } else if (rate < 0.66e6) { -        // RX1 + RX2 enabled, 2, 2, 2, 4 -        _regs.rxfilt = B8(11011111); - -        // TX1 + TX2 enabled, 2, 2, 2, 4 -        _regs.txfilt = B8(11011111); - -        divfactor = 32; -        _tfir_factor = 2; -    } else if (rate <= 20e6) { -        // RX1 + RX2 enabled, 2, 2, 2, 2 -        _regs.rxfilt = B8(11011110); - -        // TX1 + TX2 enabled, 2, 2, 2, 2 -        _regs.txfilt = B8(11011110); - -        divfactor = 16; -        _tfir_factor = 2; -    } else if ((rate > 20e6) && (rate < 23e6)) { -        // RX1 + RX2 enabled, 3, 2, 2, 2 -        _regs.rxfilt = B8(11101110); - -        // TX1 + TX2 enabled, 3, 1, 2, 2 -        _regs.txfilt = B8(11100110); - -        divfactor = 24; -        _tfir_factor = 2; -    } else if ((rate >= 23e6) && (rate < 41e6)) { -        // RX1 + RX2 enabled, 2, 2, 2, 2 -        _regs.rxfilt = B8(11011110); - -        // TX1 + TX2 enabled, 1, 2, 2, 2 -        _regs.txfilt = B8(11001110); - -        divfactor = 16; -        _tfir_factor = 2; -    } else if ((rate >= 41e6) && (rate <= 56e6)) { -        // RX1 + RX2 enabled, 3, 1, 2, 2 -        _regs.rxfilt = B8(11100110); - -        // TX1 + TX2 enabled, 3, 1, 1, 2 -        _regs.txfilt = B8(11100010); - -        divfactor = 12; -        _tfir_factor = 2; -    } else if ((rate > 56e6) && (rate <= 61.44e6)) { -        // RX1 + RX2 enabled, 3, 1, 1, 2 -        _regs.rxfilt = B8(11100010); - -        // TX1 + TX2 enabled, 3, 1, 1, 1 -        _regs.txfilt = B8(11100001); - -        divfactor = 6; -        _tfir_factor = 1; -    } else { -        // should never get in here -        throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH"); -    } - -    UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor; - -    /* Tune the BBPLL to get the ADC and DAC clocks. */ -    const double adcclk = _tune_bbvco(rate * divfactor); -    double dacclk = adcclk; - -    /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the -     * ADC clock.*/ -    if (adcclk > 336e6) { -        /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ -        _regs.bbpll = _regs.bbpll | 0x08; -        dacclk = adcclk / 2.0; -    } else { -        _regs.bbpll = _regs.bbpll & 0xF7; -    } - -    /* Set the dividers / interpolators in AD9361. */ -    _io_iface->poke8(0x002, _regs.txfilt); -    _io_iface->poke8(0x003, _regs.rxfilt); -    _io_iface->poke8(0x004, _regs.inputsel); -    _io_iface->poke8(0x00A, _regs.bbpll); - -    UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk; -    _baseband_bw = (adcclk / divfactor); - -    /* -     The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK -     to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz, -     then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64. - -     Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps -     in 1x interpolation mode, and 128 taps in 2x & 4x modes. -     */ -    const size_t max_tx_taps = std::min<size_t>( -            std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128), -            (_tfir_factor == 1) ? 64 : 128); -    const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)), -            128); - -    const size_t num_tx_taps = get_num_taps(max_tx_taps); -    const size_t num_rx_taps = get_num_taps(max_rx_taps); - -    _setup_tx_fir(num_tx_taps); -    _setup_rx_fir(num_rx_taps); - -    return _baseband_bw; -} - -/*********************************************************************** - * Publicly exported functions to host calls - **********************************************************************/ -void ad9361_device_t::initialize() -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); - -    /* Initialize shadow registers. */ -    _regs.vcodivs = 0x00; -    _regs.inputsel = 0x30; -    _regs.rxfilt = 0x00; -    _regs.txfilt = 0x00; -    _regs.bbpll = 0x02; -    _regs.bbftune_config = 0x1e; -    _regs.bbftune_mode = 0x1e; - -    /* Initialize private VRQ fields. */ -    _rx_freq = 0.0; -    _tx_freq = 0.0; -    _req_rx_freq = 0.0; -    _req_tx_freq = 0.0; -    _baseband_bw = 0.0; -    _req_clock_rate = 0.0; -    _req_coreclk = 0.0; -    _bbpll_freq = 0.0; -    _adcclock_freq = 0.0; -    _rx_bbf_tunediv = 0; -    _curr_gain_table = 0; -    _rx1_gain = 0; -    _rx2_gain = 0; -    _tx1_gain = 0; -    _tx2_gain = 0; - -    /* Reset the device. */ -    _io_iface->poke8(0x000, 0x01); -    _io_iface->poke8(0x000, 0x00); -    boost::this_thread::sleep(boost::posix_time::milliseconds(20)); - -    /* There is not a WAT big enough for this. */ -    _io_iface->poke8(0x3df, 0x01); - -    _io_iface->poke8(0x2a6, 0x0e); // Enable master bias -    _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim - -    /* Set RFPLL ref clock scale to REFCLK * 2 */ -    _io_iface->poke8(0x2ab, 0x07); -    _io_iface->poke8(0x2ac, 0xff); - -    /* Enable clocks. */ -    switch (_client_params->get_clocking_mode()) { -    case AD9361_XTAL_N_CLK_PATH: { -        _io_iface->poke8(0x009, 0x17); -    } break; - -    case AD9361_XTAL_P_CLK_PATH: { -        _io_iface->poke8(0x009, 0x07); -        _io_iface->poke8(0x292, 0x08); -        _io_iface->poke8(0x293, 0x80); -        _io_iface->poke8(0x294, 0x00); -        _io_iface->poke8(0x295, 0x14); -    } break; - -    default: -        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED"); -    } -    boost::this_thread::sleep(boost::posix_time::milliseconds(20)); - -    /* Tune the BBPLL, write TX and RX FIRS. */ -    _setup_rates(50e6); - -    /* Setup data ports (FDD dual port DDR): -     *      FDD dual port DDR CMOS no swap. -     *      Force TX on one port, RX on the other. */ -    switch (_client_params->get_digital_interface_mode()) { -    case AD9361_DDR_FDD_LVCMOS: { -        _io_iface->poke8(0x010, 0xc8); -        _io_iface->poke8(0x011, 0x00); -        _io_iface->poke8(0x012, 0x02); -    } break; - -    case AD9361_DDR_FDD_LVDS: { -        _io_iface->poke8(0x010, 0xcc); -        _io_iface->poke8(0x011, 0x00); -        _io_iface->poke8(0x012, 0x10); - -        //LVDS Specific -        _io_iface->poke8(0x03C, 0x23); -        _io_iface->poke8(0x03D, 0xFF); -        _io_iface->poke8(0x03E, 0x0F); -    } break; - -    default: -        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED"); -    } - -    /* Data delay for TX and RX data clocks */ -    digital_interface_delays_t timing = -            _client_params->get_digital_interface_timing(); -    boost::uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4) -            | (timing.rx_data_delay & 0xF); -    boost::uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4) -            | (timing.tx_data_delay & 0xF); -    _io_iface->poke8(0x006, rx_delays); -    _io_iface->poke8(0x007, tx_delays); - -    /* Setup AuxDAC */ -    _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2] -    _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2] -    _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0] -    _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0] -    _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA -    _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control -    _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select -    _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay -    _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay -    _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay -    _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay - -    /* Setup AuxADC */ -    _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset) -    _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window) -    _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) -    _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation) -    _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div) -    _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable) - -    /* Setup control outputs. */ -    _io_iface->poke8(0x035, 0x07); -    _io_iface->poke8(0x036, 0xFF); - -    /* Setup GPO */ -    _io_iface->poke8(0x03a, 0x27); //set delay register -    _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX -    _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT -    _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay -    _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay -    _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay -    _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay -    _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay -    _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay -    _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay -    _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay - -    _io_iface->poke8(0x261, 0x00); // RX LO power -    _io_iface->poke8(0x2a1, 0x00); // TX LO power -    _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO -    _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO -    _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf -    _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf -    _io_iface->poke8(0x249, 0x8e); // rx vco cal length -    _io_iface->poke8(0x289, 0x8e); // rx vco cal length -    _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp -    _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above -    _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias -    _io_iface->poke8(0x283, 0x0d); // "" TX - -    _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting -    _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting - -    /* The order of the following process is EXTREMELY important. If the -     * below functions are modified at all, device initialization and -     * calibration might be broken in the process! */ - -    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en -    _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on -    _io_iface->poke8(0x013, 0x01); // enable ENSM -    boost::this_thread::sleep(boost::posix_time::milliseconds(1)); - -    _calibrate_synth_charge_pumps(); - -    _tune_helper(RX, 800e6); -    _tune_helper(TX, 850e6); - -    _program_mixer_gm_subtable(); -    _program_gain_table(); -    _setup_gain_control(); - -    _calibrate_baseband_rx_analog_filter(); -    _calibrate_baseband_tx_analog_filter(); -    _calibrate_rx_TIAs(); -    _calibrate_secondary_tx_filter(); - -    _setup_adc(); - -    _calibrate_tx_quadrature(); -    _calibrate_rx_quadrature(); - -    // cals done, set PPORT config -    switch (_client_params->get_digital_interface_mode()) { -    case AD9361_DDR_FDD_LVCMOS: { -        _io_iface->poke8(0x012, 0x02); -    } break; - -    case AD9361_DDR_FDD_LVDS: { -        _io_iface->poke8(0x012, 0x10); -    } break; - -    default: -        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED"); -    } - -    _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit -    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en - -    /* Default TX attentuation to 10dB on both TX1 and TX2 */ -    _io_iface->poke8(0x073, 0x00); -    _io_iface->poke8(0x074, 0x00); -    _io_iface->poke8(0x075, 0x00); -    _io_iface->poke8(0x076, 0x00); - -    /* Setup RSSI Measurements */ -    _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1 -    _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3 -    _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0 -    _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1 -    _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2 -    _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3 -    _io_iface->poke8(0x156, 0x00); // RSSI Delay -    _io_iface->poke8(0x157, 0x00); // RSSI Wait -    _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select -    _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration - -    /* Turn on the default RX & TX chains. */ -    set_active_chains(true, false, false, false); - -    /* Set TXers & RXers on (only works in FDD mode) */ -    _io_iface->poke8(0x014, 0x21); -} - - -/* This function sets the RX / TX rate between AD9361 and the FPGA, and - * thus determines the interpolation / decimation required in the FPGA to - * achieve the user's requested rate. - * - * This is the only clock setting function that is exposed to the outside. */ -double ad9361_device_t::set_clock_rate(const double req_rate) -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); - -    if (req_rate > 61.44e6) { -        throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range"); -    } - -    UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate; - -    /* UHD has a habit of requesting the same rate like four times when it -     * starts up. This prevents that, and any bugs in user code that request -     * the same rate over and over. */ -    if (freq_is_nearly_equal(req_rate, _req_clock_rate)) { -        return _baseband_bw; -    } - -    /* We must be in the SLEEP / WAIT state to do this. If we aren't already -     * there, transition the ENSM to State 0. */ -    boost::uint8_t current_state = _io_iface->peek8(0x017) & 0x0F; -    switch (current_state) { -    case 0x05: -        /* We are in the ALERT state. */ -        _io_iface->poke8(0x014, 0x21); -        boost::this_thread::sleep(boost::posix_time::milliseconds(5)); -        _io_iface->poke8(0x014, 0x00); -        break; - -    case 0x0A: -        /* We are in the FDD state. */ -        _io_iface->poke8(0x014, 0x00); -        break; - -    default: -        throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state"); -        break; -    }; - -    /* Store the current chain / antenna selections so that we can restore -     * them at the end of this routine; all chains will be enabled from -     * within setup_rates for calibration purposes. */ -    boost::uint8_t orig_tx_chains = _regs.txfilt & 0xC0; -    boost::uint8_t orig_rx_chains = _regs.rxfilt & 0xC0; - -    /* Call into the clock configuration / settings function. This is where -     * all the hard work gets done. */ -    double rate = _setup_rates(req_rate); - -    UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate; - -    /* Transition to the ALERT state and calibrate everything. */ -    _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en -    _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on -    _io_iface->poke8(0x013, 0x01); //enable ENSM -    boost::this_thread::sleep(boost::posix_time::milliseconds(1)); - -    _calibrate_synth_charge_pumps(); - -    _tune_helper(RX, _rx_freq); -    _tune_helper(TX, _tx_freq); - -    _program_mixer_gm_subtable(); -    _program_gain_table(); -    _setup_gain_control(); -    _reprogram_gains(); - -    _calibrate_baseband_rx_analog_filter(); -    _calibrate_baseband_tx_analog_filter(); -    _calibrate_rx_TIAs(); -    _calibrate_secondary_tx_filter(); - -    _setup_adc(); - -    _calibrate_tx_quadrature(); -    _calibrate_rx_quadrature(); - -    // cals done, set PPORT config -    switch (_client_params->get_digital_interface_mode()) { -        case AD9361_DDR_FDD_LVCMOS: { -            _io_iface->poke8(0x012, 0x02); -        }break; - -        case AD9361_DDR_FDD_LVDS: { -            _io_iface->poke8(0x012, 0x10); -        }break; - -        default: -        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED"); -    } -    _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit -    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en - -    /* End the function in the same state as the entry state. */ -    switch (current_state) { -    case 0x05: -        /* We are already in ALERT. */ -        break; - -    case 0x0A: -        /* Transition back to FDD, and restore the original antenna -         * / chain selections. */ -        _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains; -        _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains; - -        _io_iface->poke8(0x002, _regs.txfilt); -        _io_iface->poke8(0x003, _regs.rxfilt); -        _io_iface->poke8(0x014, 0x21); -        break; - -    default: -        throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state"); -        break; -    }; - -    return rate; -} - - -/* Set which of the four TX / RX chains provided by AD9361 are active. - * - * AD9361 provides two sets of chains, Side A and Side B. Each side - * provides one TX antenna, and one RX antenna. The B200 maintains the USRP - * standard of providing one antenna connection that is both TX & RX, and - * one that is RX-only - for each chain. Thus, the possible antenna and - * chain selections are: - * - *  B200 Antenna    AD9361 Side       AD9361 Chain - *  ------------------------------------------------------------------- - *  TX / RX1        Side A              TX1 (when switched to TX) - *  TX / RX1        Side A              RX1 (when switched to RX) - *  RX1             Side A              RX1 - * - *  TX / RX2        Side B              TX2 (when switched to TX) - *  TX / RX2        Side B              RX2 (when switched to RX) - *  RX2             Side B              RX2 - */ -void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); - -    /* Clear out the current active chain settings. */ -    _regs.txfilt = _regs.txfilt & 0x3F; -    _regs.rxfilt = _regs.rxfilt & 0x3F; - -    /* Turn on the different chains based on the passed parameters. */ -    if (tx1) { -        _regs.txfilt = _regs.txfilt | 0x40; -    } -    if (tx2) { -        _regs.txfilt = _regs.txfilt | 0x80; -    } -    if (rx1) { -        _regs.rxfilt = _regs.rxfilt | 0x40; -    } -    if (rx2) { -        _regs.rxfilt = _regs.rxfilt | 0x80; -    } - -    /* Check for FDD state */ -    boost::uint8_t set_back_to_fdd = 0; -    boost::uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F; -    if (ensm_state == 0xA)   // FDD -            { -        /* Put into ALERT state (via the FDD flush state). */ -        _io_iface->poke8(0x014, 0x01); -        set_back_to_fdd = 1; -    } - -    /* Wait for FDD flush state to complete (if necessary) */ -    while (ensm_state == 0xA || ensm_state == 0xB) -        ensm_state = _io_iface->peek8(0x017) & 0x0F; - -    /* Turn on / off the chains. */ -    _io_iface->poke8(0x002, _regs.txfilt); -    _io_iface->poke8(0x003, _regs.rxfilt); - -    /* Put back into FDD state if necessary */ -    if (set_back_to_fdd) -        _io_iface->poke8(0x014, 0x21); -} - -/* Tune the RX or TX frequency. - * - * This is the publicly-accessible tune function. It makes sure the tune - * isn't a redundant request, and if not, passes it on to the class's - * internal tune function. - * - * After tuning, it runs any appropriate calibrations. */ -double ad9361_device_t::tune(direction_t direction, const double value) -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); - -    if (direction == RX) { -        if (freq_is_nearly_equal(value, _req_rx_freq)) { -            return _rx_freq; -        } - -    } else if (direction == TX) { -        if (freq_is_nearly_equal(value, _req_tx_freq)) { -            return _tx_freq; -        } - -    } else { -        throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH"); -    } - -    /* If we aren't already in the ALERT state, we will need to return to -     * the FDD state after tuning. */ -    int not_in_alert = 0; -    if ((_io_iface->peek8(0x017) & 0x0F) != 5) { -        /* Force the device into the ALERT state. */ -        not_in_alert = 1; -        _io_iface->poke8(0x014, 0x01); -    } - -    /* Tune the RF VCO! */ -    double tune_freq = _tune_helper(direction, value); - -    /* Run any necessary calibrations / setups */ -    if (direction == RX) { -        _program_gain_table(); -    } - -    /* Update the gain settings. */ -    _reprogram_gains(); - -    /* Run the calibration algorithms. */ -    _calibrate_tx_quadrature(); -    _calibrate_rx_quadrature(); - -    /* If we were in the FDD state, return it now. */ -    if (not_in_alert) { -        _io_iface->poke8(0x014, 0x21); -    } - -    return tune_freq; -} - -/* Set the gain of RX1, RX2, TX1, or TX2. - * - * Note that the 'value' passed to this function is the actual gain value, - * _not_ the gain index. This is the opposite of the eval software's GUI! - * Also note that the RX chains are done in terms of gain, and the TX chains - * are done in terms of attenuation. */ -double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value) -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); - -    if (direction == RX) { -        /* Indexing the gain tables requires an offset from the requested -         * amount of total gain in dB: -         *      < 1300MHz: dB + 5 -         *      >= 1300MHz and < 4000MHz: dB + 3 -         *      >= 4000MHz and <= 6000MHz: dB + 14 -         */ -        int gain_offset = 0; -        if (_rx_freq < 1300e6) { -            gain_offset = 5; -        } else if (_rx_freq < 4000e6) { -            gain_offset = 3; -        } else { -            gain_offset = 14; -        } - -        int gain_index = value + gain_offset; - -        /* Clip the gain values to the proper min/max gain values. */ -        if (gain_index > 76) -            gain_index = 76; -        if (gain_index < 0) -            gain_index = 0; - -        if (chain == CHAIN_1) { -            _rx1_gain = value; -            _io_iface->poke8(0x109, gain_index); -        } else { -            _rx2_gain = value; -            _io_iface->poke8(0x10c, gain_index); -        } - -        return gain_index - gain_offset; -    } else { -        /* Setting the below bits causes a change in the TX attenuation word -         * to immediately take effect. */ -        _io_iface->poke8(0x077, 0x40); -        _io_iface->poke8(0x07c, 0x40); - -        /* Each gain step is -0.25dB. Calculate the attenuation necessary -         * for the requested gain, convert it into gain steps, then write -         * the attenuation word. Max gain (so zero attenuation) is 89.75. */ -        double atten = AD9361_MAX_GAIN - value; -        int attenreg = atten * 4; -        if (chain == CHAIN_1) { -            _tx1_gain = value; -            _io_iface->poke8(0x073, attenreg & 0xFF); -            _io_iface->poke8(0x074, (attenreg >> 8) & 0x01); -        } else { -            _tx2_gain = value; -            _io_iface->poke8(0x075, attenreg & 0xFF); -            _io_iface->poke8(0x076, (attenreg >> 8) & 0x01); -        } -        return AD9361_MAX_GAIN - ((double) (attenreg) / 4); -    } -} - -void ad9361_device_t::output_test_tone() -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); -    /* Output a 480 kHz tone at 800 MHz */ -    _io_iface->poke8(0x3F4, 0x0B); -    _io_iface->poke8(0x3FC, 0xFF); -    _io_iface->poke8(0x3FD, 0xFF); -    _io_iface->poke8(0x3FE, 0x3F); -} - -void ad9361_device_t::data_port_loopback(const bool loopback_enabled) -{ -    boost::lock_guard<boost::recursive_mutex> lock(_mutex); -    _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00)); -} - -}} +//
 +// Copyright 2014 Ettus Research LLC
 +//
 +
 +#include "ad9361_filter_taps.h"
 +#include "ad9361_gain_tables.h"
 +#include "ad9361_synth_lut.h"
 +#include "ad9361_client.h"
 +#include "ad9361_device.h"
 +#define _USE_MATH_DEFINES
 +#include <cmath>
 +#include <uhd/exception.hpp>
 +#include <uhd/utils/log.hpp>
 +#include <boost/cstdint.hpp>
 +#include <boost/date_time/posix_time/posix_time.hpp>
 +#include <boost/thread/thread.hpp>
 +#include <boost/scoped_array.hpp>
 +#include <boost/format.hpp>
 +#include <boost/math/special_functions.hpp>
 +
 +////////////////////////////////////////////////////////////
 +// the following macros evaluate to a compile time constant
 +// macros By Tom Torfs - donated to the public domain
 +
 +/* turn a numeric literal into a hex constant
 +(avoids problems with leading zeroes)
 +8-bit constants max value 0x11111111, always fits in unsigned long
 +*/
 +#define HEX__(n) 0x##n##LU
 +
 +/* 8-bit conversion function */
 +#define B8__(x) ((x&0x0000000FLU)?1:0) \
 ++((x&0x000000F0LU)?2:0) \
 ++((x&0x00000F00LU)?4:0) \
 ++((x&0x0000F000LU)?8:0) \
 ++((x&0x000F0000LU)?16:0) \
 ++((x&0x00F00000LU)?32:0) \
 ++((x&0x0F000000LU)?64:0) \
 ++((x&0xF0000000LU)?128:0)
 +
 +/* for upto 8-bit binary constants */
 +#define B8(d) ((unsigned char)B8__(HEX__(d)))
 +////////////////////////////////////////////////////////////
 +
 +
 +namespace uhd { namespace usrp {
 +
 +/* This is a simple comparison for very large double-precision floating
 + * point numbers. It is used to prevent re-tunes for frequencies that are
 + * the same but not 'exactly' because of data precision issues. */
 +// TODO: see if we can avoid the need for this function
 +int freq_is_nearly_equal(double a, double b) {
 +    return std::max(a,b) - std::min(a,b) < 1;
 +}
 +
 +/***********************************************************************
 + * Filter functions
 + **********************************************************************/
 +
 +/* This function takes in the calculated maximum number of FIR taps, and
 + * returns a number of taps that makes AD9361 happy. */
 +int get_num_taps(int max_num_taps) {
 +
 +    int num_taps = 0;
 +    int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
 +    int i;
 +    for(i = 1; i < 8; i++) {
 +        if(max_num_taps >= num_taps_list[i]) {
 +            continue;
 +        } else {
 +            num_taps = num_taps_list[i - 1];
 +            break;
 +        }
 +    } if(num_taps == 0) { num_taps = 128; }
 +
 +    return num_taps;
 +}
 +
 +const double ad9361_device_t::AD9361_MAX_GAIN        = 89.75;
 +const double ad9361_device_t::AD9361_MAX_CLOCK_RATE  = 61.44e6;
 +
 +
 +/* Program either the RX or TX FIR filter.
 + *
 + * The process is the same for both filters, but the function must be told
 + * how many taps are in the filter, and given a vector of the taps
 + * themselves.  */
 +
 +void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs)
 +{
 +    boost::uint16_t base;
 +
 +    /* RX and TX filters use largely identical sets of programming registers.
 +     Select the appropriate bank of registers here. */
 +    if (direction == RX) {
 +        base = 0x0f0;
 +    } else {
 +        base = 0x060;
 +    }
 +
 +    /* Encode number of filter taps for programming register */
 +    boost::uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
 +
 +    /* Turn on the filter clock. */
 +    _io_iface->poke8(base + 5, reg_numtaps | 0x1a);
 +    boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +
 +    /* Zero the unused taps just in case they have stale data */
 +    int addr;
 +    for (addr = num_taps; addr < 128; addr++) {
 +        _io_iface->poke8(base + 0, addr);
 +        _io_iface->poke8(base + 1, 0x0);
 +        _io_iface->poke8(base + 2, 0x0);
 +        _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
 +        _io_iface->poke8(base + 4, 0x00);
 +        _io_iface->poke8(base + 4, 0x00);
 +    }
 +
 +    /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
 +    for (addr = 0; addr < num_taps; addr++) {
 +        _io_iface->poke8(base + 0, addr);
 +        _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
 +        _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
 +        _io_iface->poke8(base + 5, reg_numtaps | 0x1e);
 +        _io_iface->poke8(base + 4, 0x00);
 +        _io_iface->poke8(base + 4, 0x00);
 +    }
 +
 +    /* UG-671 states (page 25) (paraphrased and clarified):
 +     " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
 +     Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
 +     before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
 +     */
 +
 +    _io_iface->poke8(base + 5, reg_numtaps | 0x1A);
 +    if (direction == RX) {
 +        _io_iface->poke8(base + 5, reg_numtaps | 0x18);
 +        _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
 +    } else {
 +        _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/
 +    }
 +}
 +
 +
 +/* Program the RX FIR Filter. */
 +void ad9361_device_t::_setup_rx_fir(size_t num_taps)
 +{
 +    boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
 +    for (size_t i = 0; i < num_taps; i++) {
 +        switch (num_taps) {
 +        case 128:
 +            coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
 +            break;
 +        case 96:
 +            coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
 +            break;
 +        case 64:
 +            coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
 +            break;
 +        case 48:
 +            coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
 +            break;
 +        default:
 +            throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
 +        }
 +    }
 +
 +    _program_fir_filter(RX, num_taps, coeffs.get());
 +}
 +
 +/* Program the TX FIR Filter. */
 +void ad9361_device_t::_setup_tx_fir(size_t num_taps)
 +{
 +    boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]);
 +    for (size_t i = 0; i < num_taps; i++) {
 +        switch (num_taps) {
 +        case 128:
 +            coeffs[i] = boost::uint16_t(hb127_coeffs[i]);
 +            break;
 +        case 96:
 +            coeffs[i] = boost::uint16_t(hb95_coeffs[i]);
 +            break;
 +        case 64:
 +            coeffs[i] = boost::uint16_t(hb63_coeffs[i]);
 +            break;
 +        case 48:
 +            coeffs[i] = boost::uint16_t(hb47_coeffs[i]);
 +            break;
 +        default:
 +            throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
 +        }
 +    }
 +
 +    _program_fir_filter(TX, num_taps, coeffs.get());
 +}
 +
 +/***********************************************************************
 + * Calibration functions
 + ***********************************************************************/
 +
 +/* Calibrate and lock the BBPLL.
 + *
 + * This function should be called anytime the BBPLL is tuned. */
 +void ad9361_device_t::_calibrate_lock_bbpll()
 +{
 +    _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
 +    _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
 +
 +    /* Increase BBPLL KV and phase margin. */
 +    _io_iface->poke8(0x04c, 0x86);
 +    _io_iface->poke8(0x04d, 0x01);
 +    _io_iface->poke8(0x04d, 0x05);
 +
 +    /* Wait for BBPLL lock. */
 +    size_t count = 0;
 +    while (!(_io_iface->peek8(0x05e) & 0x80)) {
 +        if (count > 1000) {
 +            throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(2));
 +    }
 +}
 +
 +/* Calibrate the synthesizer charge pumps.
 + *
 + * Technically, this calibration only needs to be done once, at device
 + * initialization. */
 +void ad9361_device_t::_calibrate_synth_charge_pumps()
 +{
 +    /* If this function ever gets called, and the ENSM isn't already in the
 +     * ALERT state, then something has gone horribly wrong. */
 +    if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
 +        throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
 +    }
 +
 +    /* Calibrate the RX synthesizer charge pump. */
 +    size_t count = 0;
 +    _io_iface->poke8(0x23d, 0x04);
 +    while (!(_io_iface->peek8(0x244) & 0x80)) {
 +        if (count > 5) {
 +            throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +    }
 +    _io_iface->poke8(0x23d, 0x00);
 +
 +    /* Calibrate the TX synthesizer charge pump. */
 +    count = 0;
 +    _io_iface->poke8(0x27d, 0x04);
 +    while (!(_io_iface->peek8(0x284) & 0x80)) {
 +        if (count > 5) {
 +            throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +    }
 +    _io_iface->poke8(0x27d, 0x00);
 +}
 +
 +/* Calibrate the analog BB RX filter.
 + *
 + * Note that the filter calibration depends heavily on the baseband
 + * bandwidth, so this must be re-done after any change to the RX sample
 + * rate. */
 +double ad9361_device_t::_calibrate_baseband_rx_analog_filter()
 +{
 +    /* For filter tuning, baseband BW is half the complex BW, and must be
 +     * between 28e6 and 0.2e6. */
 +    double bbbw = _baseband_bw / 2.0;
 +    if (bbbw > 28e6) {
 +        bbbw = 28e6;
 +    } else if (bbbw < 0.20e6) {
 +        bbbw = 0.20e6;
 +    }
 +
 +    double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
 +    _rx_bbf_tunediv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / rxtune_clk)));
 +    _regs.bbftune_config = (_regs.bbftune_config & 0xFE)
 +            | ((_rx_bbf_tunediv >> 8) & 0x0001);
 +
 +    double bbbw_mhz = bbbw / 1e6;
 +    double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
 +    boost::uint8_t bbbw_khz = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(temp + 0.5)));
 +
 +    /* Set corner frequencies and dividers. */
 +    _io_iface->poke8(0x1fb, (boost::uint8_t) (bbbw_mhz));
 +    _io_iface->poke8(0x1fc, bbbw_khz);
 +    _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
 +    _io_iface->poke8(0x1f9, _regs.bbftune_config);
 +
 +    /* RX Mix Voltage settings - only change with apps engineer help. */
 +    _io_iface->poke8(0x1d5, 0x3f);
 +    _io_iface->poke8(0x1c0, 0x03);
 +
 +    /* Enable RX1 & RX2 filter tuners. */
 +    _io_iface->poke8(0x1e2, 0x02);
 +    _io_iface->poke8(0x1e3, 0x02);
 +
 +    /* Run the calibration! */
 +    size_t count = 0;
 +    _io_iface->poke8(0x016, 0x80);
 +    while (_io_iface->peek8(0x016) & 0x80) {
 +        if (count > 100) {
 +            throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +    }
 +
 +    /* Disable RX1 & RX2 filter tuners. */
 +    _io_iface->poke8(0x1e2, 0x03);
 +    _io_iface->poke8(0x1e3, 0x03);
 +
 +    return bbbw;
 +}
 +
 +/* Calibrate the analog BB TX filter.
 + *
 + * Note that the filter calibration depends heavily on the baseband
 + * bandwidth, so this must be re-done after any change to the TX sample
 + * rate. */
 +double ad9361_device_t::_calibrate_baseband_tx_analog_filter()
 +{
 +    /* For filter tuning, baseband BW is half the complex BW, and must be
 +     * between 28e6 and 0.2e6. */
 +    double bbbw = _baseband_bw / 2.0;
 +    if (bbbw > 20e6) {
 +        bbbw = 20e6;
 +    } else if (bbbw < 0.625e6) {
 +        bbbw = 0.625e6;
 +    }
 +
 +    double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
 +    boost::uint16_t txbbfdiv = std::min<boost::uint16_t>(511, boost::uint16_t(std::ceil(_bbpll_freq / txtune_clk)));
 +    _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
 +            | ((txbbfdiv >> 8) & 0x0001);
 +
 +    /* Program the divider values. */
 +    _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
 +    _io_iface->poke8(0x0d7, _regs.bbftune_mode);
 +
 +    /* Enable the filter tuner. */
 +    _io_iface->poke8(0x0ca, 0x22);
 +
 +    /* Calibrate! */
 +    size_t count = 0;
 +    _io_iface->poke8(0x016, 0x40);
 +    while (_io_iface->peek8(0x016) & 0x40) {
 +        if (count > 100) {
 +            throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
 +            break;
 +        }
 +
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +    }
 +
 +    /* Disable the filter tuner. */
 +    _io_iface->poke8(0x0ca, 0x26);
 +
 +    return bbbw;
 +}
 +
 +/* Calibrate the secondary TX filter.
 + *
 + * This filter also depends on the TX sample rate, so if a rate change is
 + * made, the previous calibration will no longer be valid. */
 +void ad9361_device_t::_calibrate_secondary_tx_filter()
 +{
 +    /* For filter tuning, baseband BW is half the complex BW, and must be
 +     * between 20e6 and 0.53e6. */
 +    double bbbw = _baseband_bw / 2.0;
 +    if (bbbw > 20e6) {
 +        bbbw = 20e6;
 +    } else if (bbbw < 0.53e6) {
 +        bbbw = 0.53e6;
 +    }
 +
 +    double bbbw_mhz = bbbw / 1e6;
 +
 +    /* Start with a resistor value of 100 Ohms. */
 +    int res = 100;
 +
 +    /* Calculate target corner frequency. */
 +    double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
 +
 +    /* Iterate through RC values to determine correct combination. */
 +    int cap = 0;
 +    int i;
 +    for (i = 0; i <= 3; i++) {
 +        cap = static_cast<int>(std::floor(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
 +                - 12;
 +
 +        if (cap <= 63) {
 +            break;
 +        }
 +
 +        res = res * 2;
 +    }
 +    if (cap > 63) {
 +        cap = 63;
 +    }
 +
 +    boost::uint8_t reg0d0, reg0d1, reg0d2;
 +
 +    /* Translate baseband bandwidths to register settings. */
 +    if ((bbbw_mhz * 2) <= 9) {
 +        reg0d0 = 0x59;
 +    } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
 +        reg0d0 = 0x56;
 +    } else if ((bbbw_mhz * 2) > 24) {
 +        reg0d0 = 0x57;
 +    } else {
 +        throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
 +        reg0d0 = 0x00;
 +    }
 +
 +    /* Translate resistor values to register settings. */
 +    if (res == 100) {
 +        reg0d1 = 0x0c;
 +    } else if (res == 200) {
 +        reg0d1 = 0x04;
 +    } else if (res == 400) {
 +        reg0d1 = 0x03;
 +    } else if (res == 800) {
 +        reg0d1 = 0x01;
 +    } else {
 +        reg0d1 = 0x0c;
 +    }
 +
 +    reg0d2 = cap;
 +
 +    /* Program the above-calculated values. Sweet. */
 +    _io_iface->poke8(0x0d2, reg0d2);
 +    _io_iface->poke8(0x0d1, reg0d1);
 +    _io_iface->poke8(0x0d0, reg0d0);
 +}
 +
 +/* Calibrate the RX TIAs.
 + *
 + * Note that the values in the TIA register, after calibration, vary with
 + * the RX gain settings. */
 +void ad9361_device_t::_calibrate_rx_TIAs()
 +{
 +    boost::uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
 +    boost::uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
 +    boost::uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
 +    boost::uint8_t reg1db = 0x00;
 +    boost::uint8_t reg1dc = 0x00;
 +    boost::uint8_t reg1dd = 0x00;
 +    boost::uint8_t reg1de = 0x00;
 +    boost::uint8_t reg1df = 0x00;
 +
 +    /* For calibration, baseband BW is half the complex BW, and must be
 +     * between 28e6 and 0.2e6. */
 +    double bbbw = _baseband_bw / 2.0;
 +    if (bbbw > 20e6) {
 +        bbbw = 20e6;
 +    } else if (bbbw < 0.20e6) {
 +        bbbw = 0.20e6;
 +    }
 +    double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
 +
 +    /* Do some crazy resistor and capacitor math. */
 +    int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
 +    int R2346 = 18300 * (reg1e6 & 0x07);
 +    double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
 +
 +    /* Translate baseband BW to register settings. */
 +    if (ceil_bbbw_mhz <= 3) {
 +        reg1db = 0xe0;
 +    } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
 +        reg1db = 0x60;
 +    } else if (ceil_bbbw_mhz > 10) {
 +        reg1db = 0x20;
 +    } else {
 +        throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
 +    }
 +
 +    if (CTIA_fF > 2920) {
 +        reg1dc = 0x40;
 +        reg1de = 0x40;
 +        boost::uint8_t temp = (boost::uint8_t) std::min<boost::uint8_t>(127,
 +                boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 320.0))));
 +        reg1dd = temp;
 +        reg1df = temp;
 +    } else {
 +        boost::uint8_t temp = boost::uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40);
 +        reg1dc = temp;
 +        reg1de = temp;
 +        reg1dd = 0;
 +        reg1df = 0;
 +    }
 +
 +    /* w00t. Settings calculated. Program them and roll out. */
 +    _io_iface->poke8(0x1db, reg1db);
 +    _io_iface->poke8(0x1dd, reg1dd);
 +    _io_iface->poke8(0x1df, reg1df);
 +    _io_iface->poke8(0x1dc, reg1dc);
 +    _io_iface->poke8(0x1de, reg1de);
 +}
 +
 +/* Setup the AD9361 ADC.
 + *
 + * There are 40 registers that control the ADC's operation, most of the
 + * values of which must be derived mathematically, dependent on the current
 + * setting of the BBPLL. Note that the order of calculation is critical, as
 + * some of the 40 registers depend on the values in others. */
 +void ad9361_device_t::_setup_adc()
 +{
 +    double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
 +                  / (1.4 * 2 * M_PI);
 +
 +    /* For calibration, baseband BW is half the complex BW, and must be
 +     * between 28e6 and 0.2e6. */
 +    if(bbbw_mhz > 28) {
 +        bbbw_mhz = 28;
 +    } else if (bbbw_mhz < 0.20) {
 +        bbbw_mhz = 0.20;
 +    }
 +
 +    boost::uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
 +    boost::uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
 +    boost::uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
 +
 +    double fsadc = _adcclock_freq / 1e6;
 +
 +    /* Sort out the RC time constant for our baseband bandwidth... */
 +    double rc_timeconst = 0.0;
 +    if(bbbw_mhz < 18) {
 +        rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
 +                            * (18300 * rxbbf_r2346)
 +                            * ((160e-15 * rxbbf_c3_msb)
 +                                + (10e-15 * rxbbf_c3_lsb) + 140e-15)
 +                            * (bbbw_mhz * 1e6)));
 +    } else {
 +        rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
 +                            * (18300 * rxbbf_r2346)
 +                            * ((160e-15 * rxbbf_c3_msb)
 +                                + (10e-15 * rxbbf_c3_lsb) + 140e-15)
 +                            * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
 +    }
 +
 +    double scale_res = sqrt(1 / rc_timeconst);
 +    double scale_cap = sqrt(1 / rc_timeconst);
 +
 +    double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
 +    double maxsnr = 640 / 160;
 +
 +    /* Calculate the values for all 40 settings registers.
 +     *
 +     * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
 +    boost::uint8_t data[40];
 +    data[0] = 0;    data[1] = 0; data[2] = 0; data[3] = 0x24;
 +    data[4] = 0x24; data[5] = 0; data[6] = 0;
 +    data[7] = std::min<boost::uint8_t>(124, boost::uint8_t(std::floor(-0.5
 +                    + (80.0 * scale_snr * scale_res
 +                    * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
 +    double data007 = data[7];
 +    data[8] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
 +                    + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
 +                    / (scale_res * scale_cap))))));
 +    data[10] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5 + (77.0 * scale_res
 +                    * std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
 +    double data010 = data[10];
 +    data[9] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(0.8 * data010)));
 +    data[11] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(0.5
 +                    + (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
 +                    / (scale_res * scale_cap))))));
 +    data[12] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(-0.5
 +                    + (80.0 * scale_res * std::min<double>(1.0,
 +                    sqrt(maxsnr * fsadc / 640.0))))));
 +    double data012 = data[12];
 +    data[13] = std::min<boost::uint8_t>(255, boost::uint8_t(std::floor(-1.5
 +                    + (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
 +                    / (scale_res * scale_cap))))));
 +    data[14] = 21 * boost::uint8_t(std::floor(0.1 * 640.0 / fsadc));
 +    data[15] = std::min<boost::uint8_t>(127, boost::uint8_t(1.025 * data007));
 +    double data015 = data[15];
 +    data[16] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data015
 +                    * (0.98 + (0.02 * std::max<double>(1.0,
 +                    (640.0 / fsadc) / maxsnr)))))));
 +    data[17] = data[15];
 +    data[18] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * (data010)));
 +    double data018 = data[18];
 +    data[19] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data018
 +                    * (0.98 + (0.02 * std::max<double>(1.0,
 +                    (640.0 / fsadc) / maxsnr)))))));
 +    data[20] = data[18];
 +    data[21] = std::min<boost::uint8_t>(127, boost::uint8_t(0.975 * data012));
 +    double data021 = data[21];
 +    data[22] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor((data021
 +                    * (0.98 + (0.02 * std::max<double>(1.0,
 +                    (640.0 / fsadc) / maxsnr)))))));
 +    data[23] = data[21];
 +    data[24] = 0x2e;
 +    data[25] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
 +                    63.0 * (fsadc / 640.0))));
 +    data[26] = boost::uint8_t(std::floor(std::min<double>(63.0, 63.0 * (fsadc / 640.0)
 +                    * (0.92 + (0.08 * (640.0 / fsadc))))));
 +    data[27] = boost::uint8_t(std::floor(std::min<double>(63.0,
 +                    32.0 * sqrt(fsadc / 640.0))));
 +    data[28] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
 +                    63.0 * (fsadc / 640.0))));
 +    data[29] = boost::uint8_t(std::floor(std::min<double>(63.0,
 +                    63.0 * (fsadc / 640.0)
 +                    * (0.92 + (0.08 * (640.0 / fsadc))))));
 +    data[30] = boost::uint8_t(std::floor(std::min<double>(63.0,
 +                    32.0 * sqrt(fsadc / 640.0))));
 +    data[31] = boost::uint8_t(std::floor(128.0 + std::min<double>(63.0,
 +                    63.0 * (fsadc / 640.0))));
 +    data[32] = boost::uint8_t(std::floor(std::min<double>(63.0,
 +                    63.0 * (fsadc / 640.0) * (0.92
 +                    + (0.08 * (640.0 / fsadc))))));
 +    data[33] = boost::uint8_t(std::floor(std::min<double>(63.0,
 +                    63.0 * sqrt(fsadc / 640.0))));
 +    data[34] = std::min<boost::uint8_t>(127, boost::uint8_t(std::floor(64.0
 +                    * sqrt(fsadc / 640.0))));
 +    data[35] = 0x40;
 +    data[36] = 0x40;
 +    data[37] = 0x2c;
 +    data[38] = 0x00;
 +    data[39] = 0x00;
 +
 +    /* Program the registers! */
 +    for(size_t i = 0; i < 40; i++) {
 +        _io_iface->poke8(0x200+i, data[i]);
 +    }
 +}
 +
 +/* Calibrate the baseband DC offset.
 + *
 + * Note that this function is called from within the TX quadrature
 + * calibration function! */
 +void ad9361_device_t::_calibrate_baseband_dc_offset()
 +{
 +    _io_iface->poke8(0x193, 0x3f); // Calibration settings
 +    _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
 +    //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
 +    _io_iface->poke8(0x194, 0x01); // More calibration settings
 +
 +    /* Start that calibration, baby. */
 +    size_t count = 0;
 +    _io_iface->poke8(0x016, 0x01);
 +    while (_io_iface->peek8(0x016) & 0x01) {
 +        if (count > 100) {
 +            throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(5));
 +    }
 +}
 +
 +/* Calibrate the RF DC offset.
 + *
 + * Note that this function is called from within the TX quadrature
 + * calibration function. */
 +void ad9361_device_t::_calibrate_rf_dc_offset()
 +{
 +    /* Some settings are frequency-dependent. */
 +    if (_rx_freq < 4e9) {
 +        _io_iface->poke8(0x186, 0x32); // RF DC Offset count
 +        _io_iface->poke8(0x187, 0x24);
 +        _io_iface->poke8(0x188, 0x05);
 +    } else {
 +        _io_iface->poke8(0x186, 0x28); // RF DC Offset count
 +        _io_iface->poke8(0x187, 0x34);
 +        _io_iface->poke8(0x188, 0x06);
 +    }
 +
 +    _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
 +    _io_iface->poke8(0x18b, 0x83);
 +    _io_iface->poke8(0x189, 0x30);
 +
 +    /* Run the calibration! */
 +    size_t count = 0;
 +    _io_iface->poke8(0x016, 0x02);
 +    while (_io_iface->peek8(0x016) & 0x02) {
 +        if (count > 100) {
 +            throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(50));
 +    }
 +}
 +
 +/* Start the RX quadrature calibration.
 + *
 + * Note that we are using AD9361's 'tracking' feature for RX quadrature
 + * calibration, so once it starts it continues to free-run during operation.
 + * It should be re-run for large frequency changes. */
 +void ad9361_device_t::_calibrate_rx_quadrature()
 +{
 +    /* Configure RX Quadrature calibration settings. */
 +    _io_iface->poke8(0x168, 0x03); // Set tone level for cal
 +    _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
 +    _io_iface->poke8(0x16a, 0x75); // Set Kexp phase
 +    _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude
 +    _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode
 +    _io_iface->poke8(0x18b, 0xad);
 +}
 +
 +/* TX quadtrature calibration routine.
 + *
 + * The TX quadrature needs to be done twice, once for each TX chain, with
 + * only one register change in between. Thus, this function enacts the
 + * calibrations, and it is called from calibrate_tx_quadrature. */
 +void ad9361_device_t::_tx_quadrature_cal_routine() {
 +    /* This is a weird process, but here is how it works:
 +     * 1) Read the calibrated NCO frequency bits out of 0A3.
 +     * 2) Write the two bits to the RX NCO freq part of 0A0.
 +     * 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
 +     * 4) Update only the TX NCO freq bits in 0A3.
 +     * 5) Profit (I hope). */
 +    boost::uint8_t reg0a3 = _io_iface->peek8(0x0a3);
 +    boost::uint8_t nco_freq = (reg0a3 & 0xC0);
 +    _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
 +    reg0a3 = _io_iface->peek8(0x0a3);
 +    _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
 +
 +    /* It is possible to reach a configuration that won't operate correctly,
 +     * where the two test tones used for quadrature calibration are outside
 +     * of the RX BBF, and therefore don't make it to the ADC. We will check
 +     * for that scenario here. */
 +    double max_cal_freq = (((_baseband_bw * _tfir_factor)
 +            * ((nco_freq >> 6) + 1)) / 32) * 2;
 +    double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
 +    if (bbbw > 28e6) {
 +        bbbw = 28e6;
 +    } else if (bbbw < 0.20e6) {
 +        bbbw = 0.20e6;
 +    }
 +    if (max_cal_freq > bbbw)
 +        throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
 +
 +    _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
 +    _io_iface->poke8(0x0a9, 0xff); // Cal count
 +    _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
 +    _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
 +    _io_iface->poke8(0x0a6, 0x01);
 +
 +    /* The gain table index used for calibration must be adjusted for the
 +     * mid-table to get a TIA index = 1 and LPF index = 0. */
 +    if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) {
 +        _io_iface->poke8(0x0aa, 0x22); // Cal gain table index
 +    } else {
 +        _io_iface->poke8(0x0aa, 0x25); // Cal gain table index
 +    }
 +
 +    _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
 +    _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
 +
 +    /* First, calibrate the baseband DC offset. */
 +    _calibrate_baseband_dc_offset();
 +
 +    /* Second, calibrate the RF DC offset. */
 +    _calibrate_rf_dc_offset();
 +
 +    /* Now, calibrate the TX quadrature! */
 +    size_t count = 0;
 +    _io_iface->poke8(0x016, 0x10);
 +    while (_io_iface->peek8(0x016) & 0x10) {
 +        if (count > 100) {
 +            throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
 +            break;
 +        }
 +        count++;
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(10));
 +    }
 +}
 +
 +/* Run the TX quadrature calibration.
 + *
 + * Note that from within this function we are also triggering the baseband
 + * and RF DC calibrations. */
 +void ad9361_device_t::_calibrate_tx_quadrature()
 +{
 +    /* Make sure we are, in fact, in the ALERT state. If not, something is
 +     * terribly wrong in the driver execution flow. */
 +    if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
 +        throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
 +    }
 +
 +    /* Turn off free-running and continuous calibrations. Note that this
 +     * will get turned back on at the end of the RX calibration routine. */
 +    _io_iface->poke8(0x169, 0xc0);
 +
 +    /* This calibration must be done in a certain order, and for both TX_A
 +     * and TX_B, separately. Store the original setting so that we can
 +     * restore it later. */
 +    boost::uint8_t orig_reg_inputsel = _regs.inputsel;
 +
 +    /***********************************************************************
 +     * TX1/2-A Calibration
 +     **********************************************************************/
 +    _regs.inputsel = _regs.inputsel & 0xBF;
 +    _io_iface->poke8(0x004, _regs.inputsel);
 +
 +    _tx_quadrature_cal_routine();
 +
 +    /***********************************************************************
 +     * TX1/2-B Calibration
 +     **********************************************************************/
 +    _regs.inputsel = _regs.inputsel | 0x40;
 +    _io_iface->poke8(0x004, _regs.inputsel);
 +
 +    _tx_quadrature_cal_routine();
 +
 +    /***********************************************************************
 +     * fin
 +     **********************************************************************/
 +    _regs.inputsel = orig_reg_inputsel;
 +    _io_iface->poke8(0x004, orig_reg_inputsel);
 +}
 +
 +
 +/***********************************************************************
 + * Other Misc Setup Functions
 + ***********************************************************************/
 +
 +/* Program the mixer gain table.
 + *
 + * Note that this table is fixed for all frequency settings. */
 +void ad9361_device_t::_program_mixer_gm_subtable()
 +{
 +    boost::uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
 +            0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
 +    boost::uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
 +            0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
 +
 +    /* Start the clock. */
 +    _io_iface->poke8(0x13f, 0x02);
 +
 +    /* Program the GM Sub-table. */
 +    int i;
 +    for (i = 15; i >= 0; i--) {
 +        _io_iface->poke8(0x138, i);
 +        _io_iface->poke8(0x139, gain[(15 - i)]);
 +        _io_iface->poke8(0x13A, 0x00);
 +        _io_iface->poke8(0x13B, gm[(15 - i)]);
 +        _io_iface->poke8(0x13F, 0x06);
 +        _io_iface->poke8(0x13C, 0x00);
 +        _io_iface->poke8(0x13C, 0x00);
 +    }
 +
 +    /* Clear write bit and stop clock. */
 +    _io_iface->poke8(0x13f, 0x02);
 +    _io_iface->poke8(0x13C, 0x00);
 +    _io_iface->poke8(0x13C, 0x00);
 +    _io_iface->poke8(0x13f, 0x00);
 +}
 +
 +/* Program the gain table.
 + *
 + * There are three different gain tables for different frequency ranges! */
 +void ad9361_device_t::_program_gain_table() {
 +    /* Figure out which gain table we should be using for our current
 +     * frequency band. */
 +    boost::uint8_t (*gain_table)[5] = NULL;
 +    boost::uint8_t new_gain_table;
 +    if (_rx_freq < 1300e6) {
 +        gain_table = gain_table_sub_1300mhz;
 +        new_gain_table = 1;
 +    } else if (_rx_freq < 4e9) {
 +        gain_table = gain_table_1300mhz_to_4000mhz;
 +        new_gain_table = 2;
 +    } else if (_rx_freq <= 6e9) {
 +        gain_table = gain_table_4000mhz_to_6000mhz;
 +        new_gain_table = 3;
 +    } else {
 +        throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
 +        new_gain_table = 1;
 +    }
 +
 +    /* Only re-program the gain table if there has been a band change. */
 +    if (_curr_gain_table == new_gain_table) {
 +        return;
 +    } else {
 +        _curr_gain_table = new_gain_table;
 +    }
 +
 +    /* Okay, we have to program a new gain table. Sucks, brah. Start the
 +     * gain table clock. */
 +    _io_iface->poke8(0x137, 0x1A);
 +
 +    /* IT'S PROGRAMMING TIME. */
 +    boost::uint8_t index = 0;
 +    for (; index < 77; index++) {
 +        _io_iface->poke8(0x130, index);
 +        _io_iface->poke8(0x131, gain_table[index][1]);
 +        _io_iface->poke8(0x132, gain_table[index][2]);
 +        _io_iface->poke8(0x133, gain_table[index][3]);
 +        _io_iface->poke8(0x137, 0x1E);
 +        _io_iface->poke8(0x134, 0x00);
 +        _io_iface->poke8(0x134, 0x00);
 +    }
 +
 +    /* Everything above the 77th index is zero. */
 +    for (; index < 91; index++) {
 +        _io_iface->poke8(0x130, index);
 +        _io_iface->poke8(0x131, 0x00);
 +        _io_iface->poke8(0x132, 0x00);
 +        _io_iface->poke8(0x133, 0x00);
 +        _io_iface->poke8(0x137, 0x1E);
 +        _io_iface->poke8(0x134, 0x00);
 +        _io_iface->poke8(0x134, 0x00);
 +    }
 +
 +    /* Clear the write bit and stop the gain clock. */
 +    _io_iface->poke8(0x137, 0x1A);
 +    _io_iface->poke8(0x134, 0x00);
 +    _io_iface->poke8(0x134, 0x00);
 +    _io_iface->poke8(0x137, 0x00);
 +}
 +
 +/* Setup gain control registers.
 + *
 + * This really only needs to be done once, at initialization. */
 +void ad9361_device_t::_setup_gain_control()
 +{
 +    _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
 +    _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
 +    _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
 +    _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
 +    _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
 +    _io_iface->poke8(0x100, 0x6F); // Max Digital Gain
 +    _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
 +    _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
 +    _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
 +    _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
 +    _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
 +    _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
 +    _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
 +    _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
 +    _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
 +    _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
 +    _io_iface->poke8(0x114, 0x30); // Low Power Threshold
 +    _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
 +    _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
 +}
 +
 +/* Setup the RX or TX synthesizers.
 + *
 + * This setup depends on a fixed look-up table, which is stored in an
 + * included header file. The table is indexed based on the passed VCO rate.
 + */
 +void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
 +{
 +    /* The vcorates in the vco_index array represent lower boundaries for
 +     * rates. Once we find a match, we use that index to look-up the rest of
 +     * the register values in the LUT. */
 +    int vcoindex = 0;
 +    for (size_t i = 0; i < 53; i++) {
 +        vcoindex = i;
 +        if (vcorate > vco_index[i]) {
 +            break;
 +        }
 +    }
 +    if (vcoindex > 53)
 +        throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
 +
 +    /* Parse the values out of the LUT based on our calculated index... */
 +    boost::uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
 +    boost::uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
 +    boost::uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
 +    boost::uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
 +    boost::uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
 +    boost::uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
 +    boost::uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
 +    boost::uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
 +    boost::uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
 +    boost::uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
 +    boost::uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
 +    boost::uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
 +
 +    /* ... annnd program! */
 +    if (direction == RX) {
 +        _io_iface->poke8(0x23a, 0x40 | vco_output_level);
 +        _io_iface->poke8(0x239, 0xC0 | vco_varactor);
 +        _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
 +        _io_iface->poke8(0x238, (vco_cal_offset << 3));
 +        _io_iface->poke8(0x245, 0x00);
 +        _io_iface->poke8(0x251, vco_varactor_ref);
 +        _io_iface->poke8(0x250, 0x70);
 +        _io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
 +        _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
 +        _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
 +        _io_iface->poke8(0x240, loop_filter_r3);
 +    } else if (direction == TX) {
 +        _io_iface->poke8(0x27a, 0x40 | vco_output_level);
 +        _io_iface->poke8(0x279, 0xC0 | vco_varactor);
 +        _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
 +        _io_iface->poke8(0x278, (vco_cal_offset << 3));
 +        _io_iface->poke8(0x285, 0x00);
 +        _io_iface->poke8(0x291, vco_varactor_ref);
 +        _io_iface->poke8(0x290, 0x70);
 +        _io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
 +        _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
 +        _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
 +        _io_iface->poke8(0x280, loop_filter_r3);
 +    } else {
 +        throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
 +    }
 +}
 +
 +
 +/* Tune the baseband VCO.
 + *
 + * This clock signal is what gets fed to the ADCs and DACs. This function is
 + * not exported outside of this file, and is invoked based on the rate
 + * fed to the public set_clock_rate function. */
 +double ad9361_device_t::_tune_bbvco(const double rate)
 +{
 +    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
 +
 +    /* Let's not re-tune to the same frequency over and over... */
 +    if (freq_is_nearly_equal(rate, _req_coreclk)) {
 +        return _adcclock_freq;
 +    }
 +
 +    _req_coreclk = rate;
 +
 +    const double fref = 40e6;
 +    const int modulus = 2088960;
 +    const double vcomax = 1430e6;
 +    const double vcomin = 672e6;
 +    double vcorate;
 +    int vcodiv;
 +
 +    /* Iterate over VCO dividers until appropriate divider is found. */
 +    int i = 1;
 +    for (; i <= 6; i++) {
 +        vcodiv = 1 << i;
 +        vcorate = rate * vcodiv;
 +
 +        if (vcorate >= vcomin && vcorate <= vcomax)
 +            break;
 +    }
 +    if (i == 7)
 +        throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
 +
 +    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
 +    /* Fo = Fref * (Nint + Nfrac / mod) */
 +    int nint = static_cast<int>(vcorate / fref);
 +    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
 +    int nfrac = static_cast<int>(boost::math::round(((vcorate / fref) - (double) nint) * (double) modulus));
 +    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
 +    UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
 +    double actual_vcorate = fref
 +            * ((double) nint + ((double) nfrac / (double) modulus));
 +
 +    /* Scale CP current according to VCO rate */
 +    const double icp_baseline = 150e-6;
 +    const double freq_baseline = 1280e6;
 +    double icp = icp_baseline * (actual_vcorate / freq_baseline);
 +    int icp_reg = static_cast<int>(icp / 25e-6) - 1;
 +
 +    _io_iface->poke8(0x045, 0x00);            // REFCLK / 1 to BBPLL
 +    _io_iface->poke8(0x046, icp_reg & 0x3F);  // CP current
 +    _io_iface->poke8(0x048, 0xe8);            // BBPLL loop filters
 +    _io_iface->poke8(0x049, 0x5b);            // BBPLL loop filters
 +    _io_iface->poke8(0x04a, 0x35);            // BBPLL loop filters
 +
 +    _io_iface->poke8(0x04b, 0xe0);
 +    _io_iface->poke8(0x04e, 0x10);            // Max accuracy
 +
 +    _io_iface->poke8(0x043, nfrac & 0xFF);         // Nfrac[7:0]
 +    _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF);  // Nfrac[15:8]
 +    _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
 +    _io_iface->poke8(0x044, nint);                 // Nint
 +
 +    _calibrate_lock_bbpll();
 +
 +    _regs.bbpll = (_regs.bbpll & 0xF8) | i;
 +
 +    _bbpll_freq = actual_vcorate;
 +    _adcclock_freq = (actual_vcorate / vcodiv);
 +
 +    return _adcclock_freq;
 +}
 +
 +/* This function re-programs all of the gains in the system.
 + *
 + * Because the gain values match to different gain indices based on the
 + * current operating band, this function can be called to update all gain
 + * settings to the appropriate index after a re-tune. */
 +void ad9361_device_t::_reprogram_gains()
 +{
 +    set_gain(RX, CHAIN_1,_rx1_gain);
 +    set_gain(RX, CHAIN_2,_rx2_gain);
 +    set_gain(TX, CHAIN_1,_tx1_gain);
 +    set_gain(TX, CHAIN_2,_tx2_gain);
 +}
 +
 +/* This is the internal tune function, not available for a host call.
 + *
 + * Calculate the VCO settings for the requested frquency, and then either
 + * tune the RX or TX VCO. */
 +double ad9361_device_t::_tune_helper(direction_t direction, const double value)
 +{
 +    /* The RFPLL runs from 6 GHz - 12 GHz */
 +    const double fref = 80e6;
 +    const int modulus = 8388593;
 +    const double vcomax = 12e9;
 +    const double vcomin = 6e9;
 +    double vcorate;
 +    int vcodiv;
 +
 +    /* Iterate over VCO dividers until appropriate divider is found. */
 +    int i;
 +    for (i = 0; i <= 6; i++) {
 +        vcodiv = 2 << i;
 +        vcorate = value * vcodiv;
 +        if (vcorate >= vcomin && vcorate <= vcomax)
 +            break;
 +    }
 +    if (i == 7)
 +        throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
 +
 +    int nint = static_cast<int>(vcorate / fref);
 +    int nfrac = static_cast<int>(((vcorate / fref) - nint) * modulus);
 +
 +    double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
 +    double actual_lo = actual_vcorate / vcodiv;
 +
 +    if (direction == RX) {
 +
 +        _req_rx_freq = value;
 +
 +        /* Set band-specific settings. */
 +        if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
 +            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30;
 +        } else if ((value
 +                >= _client_params->get_band_edge(AD9361_RX_BAND0))
 +                && (value
 +                        < _client_params->get_band_edge(AD9361_RX_BAND1))) {
 +            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C;
 +        } else if ((value
 +                >= _client_params->get_band_edge(AD9361_RX_BAND1))
 +                && (value <= 6e9)) {
 +            _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03;
 +        } else {
 +            throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
 +        }
 +
 +        _io_iface->poke8(0x004, _regs.inputsel);
 +
 +        /* Store vcodiv setting. */
 +        _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
 +
 +        /* Setup the synthesizer. */
 +        _setup_synth(RX, actual_vcorate);
 +
 +        /* Tune!!!! */
 +        _io_iface->poke8(0x233, nfrac & 0xFF);
 +        _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
 +        _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
 +        _io_iface->poke8(0x232, (nint >> 8) & 0xFF);
 +        _io_iface->poke8(0x231, nint & 0xFF);
 +        _io_iface->poke8(0x005, _regs.vcodivs);
 +
 +        /* Lock the PLL! */
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(2));
 +        if ((_io_iface->peek8(0x247) & 0x02) == 0) {
 +            throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
 +        }
 +
 +        _rx_freq = actual_lo;
 +
 +        return actual_lo;
 +
 +    } else {
 +
 +        _req_tx_freq = value;
 +
 +        /* Set band-specific settings. */
 +        if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
 +            _regs.inputsel = _regs.inputsel | 0x40;
 +        } else if ((value
 +                >= _client_params->get_band_edge(AD9361_TX_BAND0))
 +                && (value <= 6e9)) {
 +            _regs.inputsel = _regs.inputsel & 0xBF;
 +        } else {
 +            throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
 +        }
 +
 +        _io_iface->poke8(0x004, _regs.inputsel);
 +
 +        /* Store vcodiv setting. */
 +        _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
 +
 +        /* Setup the synthesizer. */
 +        _setup_synth(TX, actual_vcorate);
 +
 +        /* Tune it, homey. */
 +        _io_iface->poke8(0x273, nfrac & 0xFF);
 +        _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
 +        _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
 +        _io_iface->poke8(0x272, (nint >> 8) & 0xFF);
 +        _io_iface->poke8(0x271, nint & 0xFF);
 +        _io_iface->poke8(0x005, _regs.vcodivs);
 +
 +        /* Lock the PLL! */
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(2));
 +        if ((_io_iface->peek8(0x287) & 0x02) == 0) {
 +            throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
 +        }
 +
 +        _tx_freq = actual_lo;
 +
 +        return actual_lo;
 +    }
 +}
 +
 +/* Configure the various clock / sample rates in the RX and TX chains.
 + *
 + * Functionally, this function configures AD9361's RX and TX rates. For
 + * a requested TX & RX rate, it sets the interpolation & decimation filters,
 + * and tunes the VCO that feeds the ADCs and DACs.
 + */
 +double ad9361_device_t::_setup_rates(const double rate)
 +{
 +    /* If we make it into this function, then we are tuning to a new rate.
 +     * Store the new rate. */
 +    _req_clock_rate = rate;
 +
 +    /* Set the decimation and interpolation values in the RX and TX chains.
 +     * This also switches filters in / out. Note that all transmitters and
 +     * receivers have to be turned on for the calibration portion of
 +     * bring-up, and then they will be switched out to reflect the actual
 +     * user-requested antenna selections. */
 +    int divfactor = 0;
 +    _tfir_factor = 0;
 +    if (rate < 0.33e6) {
 +        // RX1 + RX2 enabled, 3, 2, 2, 4
 +        _regs.rxfilt = B8(11101111);
 +
 +        // TX1 + TX2 enabled, 3, 2, 2, 4
 +        _regs.txfilt = B8(11101111);
 +
 +        divfactor = 48;
 +        _tfir_factor = 2;
 +    } else if (rate < 0.66e6) {
 +        // RX1 + RX2 enabled, 2, 2, 2, 4
 +        _regs.rxfilt = B8(11011111);
 +
 +        // TX1 + TX2 enabled, 2, 2, 2, 4
 +        _regs.txfilt = B8(11011111);
 +
 +        divfactor = 32;
 +        _tfir_factor = 2;
 +    } else if (rate <= 20e6) {
 +        // RX1 + RX2 enabled, 2, 2, 2, 2
 +        _regs.rxfilt = B8(11011110);
 +
 +        // TX1 + TX2 enabled, 2, 2, 2, 2
 +        _regs.txfilt = B8(11011110);
 +
 +        divfactor = 16;
 +        _tfir_factor = 2;
 +    } else if ((rate > 20e6) && (rate < 23e6)) {
 +        // RX1 + RX2 enabled, 3, 2, 2, 2
 +        _regs.rxfilt = B8(11101110);
 +
 +        // TX1 + TX2 enabled, 3, 1, 2, 2
 +        _regs.txfilt = B8(11100110);
 +
 +        divfactor = 24;
 +        _tfir_factor = 2;
 +    } else if ((rate >= 23e6) && (rate < 41e6)) {
 +        // RX1 + RX2 enabled, 2, 2, 2, 2
 +        _regs.rxfilt = B8(11011110);
 +
 +        // TX1 + TX2 enabled, 1, 2, 2, 2
 +        _regs.txfilt = B8(11001110);
 +
 +        divfactor = 16;
 +        _tfir_factor = 2;
 +    } else if ((rate >= 41e6) && (rate <= 56e6)) {
 +        // RX1 + RX2 enabled, 3, 1, 2, 2
 +        _regs.rxfilt = B8(11100110);
 +
 +        // TX1 + TX2 enabled, 3, 1, 1, 2
 +        _regs.txfilt = B8(11100010);
 +
 +        divfactor = 12;
 +        _tfir_factor = 2;
 +    } else if ((rate > 56e6) && (rate <= 61.44e6)) {
 +        // RX1 + RX2 enabled, 3, 1, 1, 2
 +        _regs.rxfilt = B8(11100010);
 +
 +        // TX1 + TX2 enabled, 3, 1, 1, 1
 +        _regs.txfilt = B8(11100001);
 +
 +        divfactor = 6;
 +        _tfir_factor = 1;
 +    } else {
 +        // should never get in here
 +        throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
 +    }
 +
 +    UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
 +
 +    /* Tune the BBPLL to get the ADC and DAC clocks. */
 +    const double adcclk = _tune_bbvco(rate * divfactor);
 +    double dacclk = adcclk;
 +
 +    /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
 +     * ADC clock.*/
 +    if (adcclk > 336e6) {
 +        /* Make the DAC clock = ADC/2, and bypass the TXFIR. */
 +        _regs.bbpll = _regs.bbpll | 0x08;
 +        dacclk = adcclk / 2.0;
 +    } else {
 +        _regs.bbpll = _regs.bbpll & 0xF7;
 +    }
 +
 +    /* Set the dividers / interpolators in AD9361. */
 +    _io_iface->poke8(0x002, _regs.txfilt);
 +    _io_iface->poke8(0x003, _regs.rxfilt);
 +    _io_iface->poke8(0x004, _regs.inputsel);
 +    _io_iface->poke8(0x00A, _regs.bbpll);
 +
 +    UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
 +    _baseband_bw = (adcclk / divfactor);
 +
 +    /*
 +     The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
 +     to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
 +     then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
 +
 +     Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
 +     in 1x interpolation mode, and 128 taps in 2x & 4x modes.
 +     */
 +    const size_t max_tx_taps = std::min<size_t>(
 +            std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128),
 +            (_tfir_factor == 1) ? 64 : 128);
 +    const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)),
 +            128);
 +
 +    const size_t num_tx_taps = get_num_taps(max_tx_taps);
 +    const size_t num_rx_taps = get_num_taps(max_rx_taps);
 +
 +    _setup_tx_fir(num_tx_taps);
 +    _setup_rx_fir(num_rx_taps);
 +
 +    return _baseband_bw;
 +}
 +
 +/***********************************************************************
 + * Publicly exported functions to host calls
 + **********************************************************************/
 +void ad9361_device_t::initialize()
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +
 +    /* Initialize shadow registers. */
 +    _regs.vcodivs = 0x00;
 +    _regs.inputsel = 0x30;
 +    _regs.rxfilt = 0x00;
 +    _regs.txfilt = 0x00;
 +    _regs.bbpll = 0x02;
 +    _regs.bbftune_config = 0x1e;
 +    _regs.bbftune_mode = 0x1e;
 +
 +    /* Initialize private VRQ fields. */
 +    _rx_freq = 0.0;
 +    _tx_freq = 0.0;
 +    _req_rx_freq = 0.0;
 +    _req_tx_freq = 0.0;
 +    _baseband_bw = 0.0;
 +    _req_clock_rate = 0.0;
 +    _req_coreclk = 0.0;
 +    _bbpll_freq = 0.0;
 +    _adcclock_freq = 0.0;
 +    _rx_bbf_tunediv = 0;
 +    _curr_gain_table = 0;
 +    _rx1_gain = 0;
 +    _rx2_gain = 0;
 +    _tx1_gain = 0;
 +    _tx2_gain = 0;
 +
 +    /* Reset the device. */
 +    _io_iface->poke8(0x000, 0x01);
 +    _io_iface->poke8(0x000, 0x00);
 +    boost::this_thread::sleep(boost::posix_time::milliseconds(20));
 +
 +    /* There is not a WAT big enough for this. */
 +    _io_iface->poke8(0x3df, 0x01);
 +
 +    _io_iface->poke8(0x2a6, 0x0e); // Enable master bias
 +    _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
 +
 +    /* Set RFPLL ref clock scale to REFCLK * 2 */
 +    _io_iface->poke8(0x2ab, 0x07);
 +    _io_iface->poke8(0x2ac, 0xff);
 +
 +    /* Enable clocks. */
 +    switch (_client_params->get_clocking_mode()) {
 +    case AD9361_XTAL_N_CLK_PATH: {
 +        _io_iface->poke8(0x009, 0x17);
 +    } break;
 +
 +    case AD9361_XTAL_P_CLK_PATH: {
 +        _io_iface->poke8(0x009, 0x07);
 +        _io_iface->poke8(0x292, 0x08);
 +        _io_iface->poke8(0x293, 0x80);
 +        _io_iface->poke8(0x294, 0x00);
 +        _io_iface->poke8(0x295, 0x14);
 +    } break;
 +
 +    default:
 +        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
 +    }
 +    boost::this_thread::sleep(boost::posix_time::milliseconds(20));
 +
 +    /* Tune the BBPLL, write TX and RX FIRS. */
 +    _setup_rates(50e6);
 +
 +    /* Setup data ports (FDD dual port DDR):
 +     *      FDD dual port DDR CMOS no swap.
 +     *      Force TX on one port, RX on the other. */
 +    switch (_client_params->get_digital_interface_mode()) {
 +    case AD9361_DDR_FDD_LVCMOS: {
 +        _io_iface->poke8(0x010, 0xc8);
 +        _io_iface->poke8(0x011, 0x00);
 +        _io_iface->poke8(0x012, 0x02);
 +    } break;
 +
 +    case AD9361_DDR_FDD_LVDS: {
 +        _io_iface->poke8(0x010, 0xcc);
 +        _io_iface->poke8(0x011, 0x00);
 +        _io_iface->poke8(0x012, 0x10);
 +
 +        //LVDS Specific
 +        _io_iface->poke8(0x03C, 0x23);
 +        _io_iface->poke8(0x03D, 0xFF);
 +        _io_iface->poke8(0x03E, 0x0F);
 +    } break;
 +
 +    default:
 +        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
 +    }
 +
 +    /* Data delay for TX and RX data clocks */
 +    digital_interface_delays_t timing =
 +            _client_params->get_digital_interface_timing();
 +    boost::uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
 +            | (timing.rx_data_delay & 0xF);
 +    boost::uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
 +            | (timing.tx_data_delay & 0xF);
 +    _io_iface->poke8(0x006, rx_delays);
 +    _io_iface->poke8(0x007, tx_delays);
 +
 +    /* Setup AuxDAC */
 +    _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
 +    _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
 +    _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
 +    _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
 +    _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA
 +    _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
 +    _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
 +    _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
 +    _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
 +    _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
 +    _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
 +
 +    /* Setup AuxADC */
 +    _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
 +    _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
 +    _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure)
 +    _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
 +    _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
 +    _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
 +
 +    /* Setup control outputs. */
 +    _io_iface->poke8(0x035, 0x07);
 +    _io_iface->poke8(0x036, 0xFF);
 +
 +    /* Setup GPO */
 +    _io_iface->poke8(0x03a, 0x27); //set delay register
 +    _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
 +    _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
 +    _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
 +    _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
 +    _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
 +    _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
 +    _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
 +    _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
 +    _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
 +    _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
 +
 +    _io_iface->poke8(0x261, 0x00); // RX LO power
 +    _io_iface->poke8(0x2a1, 0x00); // TX LO power
 +    _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
 +    _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
 +    _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
 +    _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
 +    _io_iface->poke8(0x249, 0x8e); // rx vco cal length
 +    _io_iface->poke8(0x289, 0x8e); // rx vco cal length
 +    _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
 +    _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
 +    _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
 +    _io_iface->poke8(0x283, 0x0d); // "" TX
 +
 +    _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
 +    _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
 +
 +    /* The order of the following process is EXTREMELY important. If the
 +     * below functions are modified at all, device initialization and
 +     * calibration might be broken in the process! */
 +
 +    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
 +    _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
 +    _io_iface->poke8(0x013, 0x01); // enable ENSM
 +    boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +
 +    _calibrate_synth_charge_pumps();
 +
 +    _tune_helper(RX, 800e6);
 +    _tune_helper(TX, 850e6);
 +
 +    _program_mixer_gm_subtable();
 +    _program_gain_table();
 +    _setup_gain_control();
 +
 +    _calibrate_baseband_rx_analog_filter();
 +    _calibrate_baseband_tx_analog_filter();
 +    _calibrate_rx_TIAs();
 +    _calibrate_secondary_tx_filter();
 +
 +    _setup_adc();
 +
 +    _calibrate_tx_quadrature();
 +    _calibrate_rx_quadrature();
 +
 +    // cals done, set PPORT config
 +    switch (_client_params->get_digital_interface_mode()) {
 +    case AD9361_DDR_FDD_LVCMOS: {
 +        _io_iface->poke8(0x012, 0x02);
 +    } break;
 +
 +    case AD9361_DDR_FDD_LVDS: {
 +        _io_iface->poke8(0x012, 0x10);
 +    } break;
 +
 +    default:
 +        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
 +    }
 +
 +    _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
 +    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
 +
 +    /* Default TX attentuation to 10dB on both TX1 and TX2 */
 +    _io_iface->poke8(0x073, 0x00);
 +    _io_iface->poke8(0x074, 0x00);
 +    _io_iface->poke8(0x075, 0x00);
 +    _io_iface->poke8(0x076, 0x00);
 +
 +    /* Setup RSSI Measurements */
 +    _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
 +    _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
 +    _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
 +    _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
 +    _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
 +    _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
 +    _io_iface->poke8(0x156, 0x00); // RSSI Delay
 +    _io_iface->poke8(0x157, 0x00); // RSSI Wait
 +    _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
 +    _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
 +
 +    /* Turn on the default RX & TX chains. */
 +    set_active_chains(true, false, false, false);
 +
 +    /* Set TXers & RXers on (only works in FDD mode) */
 +    _io_iface->poke8(0x014, 0x21);
 +}
 +
 +
 +/* This function sets the RX / TX rate between AD9361 and the FPGA, and
 + * thus determines the interpolation / decimation required in the FPGA to
 + * achieve the user's requested rate.
 + *
 + * This is the only clock setting function that is exposed to the outside. */
 +double ad9361_device_t::set_clock_rate(const double req_rate)
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +
 +    if (req_rate > 61.44e6) {
 +        throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
 +    }
 +
 +    UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
 +
 +    /* UHD has a habit of requesting the same rate like four times when it
 +     * starts up. This prevents that, and any bugs in user code that request
 +     * the same rate over and over. */
 +    if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
 +        return _baseband_bw;
 +    }
 +
 +    /* We must be in the SLEEP / WAIT state to do this. If we aren't already
 +     * there, transition the ENSM to State 0. */
 +    boost::uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
 +    switch (current_state) {
 +    case 0x05:
 +        /* We are in the ALERT state. */
 +        _io_iface->poke8(0x014, 0x21);
 +        boost::this_thread::sleep(boost::posix_time::milliseconds(5));
 +        _io_iface->poke8(0x014, 0x00);
 +        break;
 +
 +    case 0x0A:
 +        /* We are in the FDD state. */
 +        _io_iface->poke8(0x014, 0x00);
 +        break;
 +
 +    default:
 +        throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
 +        break;
 +    };
 +
 +    /* Store the current chain / antenna selections so that we can restore
 +     * them at the end of this routine; all chains will be enabled from
 +     * within setup_rates for calibration purposes. */
 +    boost::uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
 +    boost::uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
 +
 +    /* Call into the clock configuration / settings function. This is where
 +     * all the hard work gets done. */
 +    double rate = _setup_rates(req_rate);
 +
 +    UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
 +
 +    /* Transition to the ALERT state and calibrate everything. */
 +    _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
 +    _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
 +    _io_iface->poke8(0x013, 0x01); //enable ENSM
 +    boost::this_thread::sleep(boost::posix_time::milliseconds(1));
 +
 +    _calibrate_synth_charge_pumps();
 +
 +    _tune_helper(RX, _rx_freq);
 +    _tune_helper(TX, _tx_freq);
 +
 +    _program_mixer_gm_subtable();
 +    _program_gain_table();
 +    _setup_gain_control();
 +    _reprogram_gains();
 +
 +    _calibrate_baseband_rx_analog_filter();
 +    _calibrate_baseband_tx_analog_filter();
 +    _calibrate_rx_TIAs();
 +    _calibrate_secondary_tx_filter();
 +
 +    _setup_adc();
 +
 +    _calibrate_tx_quadrature();
 +    _calibrate_rx_quadrature();
 +
 +    // cals done, set PPORT config
 +    switch (_client_params->get_digital_interface_mode()) {
 +        case AD9361_DDR_FDD_LVCMOS: {
 +            _io_iface->poke8(0x012, 0x02);
 +        }break;
 +
 +        case AD9361_DDR_FDD_LVDS: {
 +            _io_iface->poke8(0x012, 0x10);
 +        }break;
 +
 +        default:
 +        throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
 +    }
 +    _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
 +    _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
 +
 +    /* End the function in the same state as the entry state. */
 +    switch (current_state) {
 +    case 0x05:
 +        /* We are already in ALERT. */
 +        break;
 +
 +    case 0x0A:
 +        /* Transition back to FDD, and restore the original antenna
 +         * / chain selections. */
 +        _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
 +        _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
 +
 +        _io_iface->poke8(0x002, _regs.txfilt);
 +        _io_iface->poke8(0x003, _regs.rxfilt);
 +        _io_iface->poke8(0x014, 0x21);
 +        break;
 +
 +    default:
 +        throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
 +        break;
 +    };
 +
 +    return rate;
 +}
 +
 +
 +/* Set which of the four TX / RX chains provided by AD9361 are active.
 + *
 + * AD9361 provides two sets of chains, Side A and Side B. Each side
 + * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
 + * standard of providing one antenna connection that is both TX & RX, and
 + * one that is RX-only - for each chain. Thus, the possible antenna and
 + * chain selections are:
 + *
 + *  B200 Antenna    AD9361 Side       AD9361 Chain
 + *  -------------------------------------------------------------------
 + *  TX / RX1        Side A              TX1 (when switched to TX)
 + *  TX / RX1        Side A              RX1 (when switched to RX)
 + *  RX1             Side A              RX1
 + *
 + *  TX / RX2        Side B              TX2 (when switched to TX)
 + *  TX / RX2        Side B              RX2 (when switched to RX)
 + *  RX2             Side B              RX2
 + */
 +void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +
 +    /* Clear out the current active chain settings. */
 +    _regs.txfilt = _regs.txfilt & 0x3F;
 +    _regs.rxfilt = _regs.rxfilt & 0x3F;
 +
 +    /* Turn on the different chains based on the passed parameters. */
 +    if (tx1) {
 +        _regs.txfilt = _regs.txfilt | 0x40;
 +    }
 +    if (tx2) {
 +        _regs.txfilt = _regs.txfilt | 0x80;
 +    }
 +    if (rx1) {
 +        _regs.rxfilt = _regs.rxfilt | 0x40;
 +    }
 +    if (rx2) {
 +        _regs.rxfilt = _regs.rxfilt | 0x80;
 +    }
 +
 +    /* Check for FDD state */
 +    boost::uint8_t set_back_to_fdd = 0;
 +    boost::uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
 +    if (ensm_state == 0xA)   // FDD
 +            {
 +        /* Put into ALERT state (via the FDD flush state). */
 +        _io_iface->poke8(0x014, 0x01);
 +        set_back_to_fdd = 1;
 +    }
 +
 +    /* Wait for FDD flush state to complete (if necessary) */
 +    while (ensm_state == 0xA || ensm_state == 0xB)
 +        ensm_state = _io_iface->peek8(0x017) & 0x0F;
 +
 +    /* Turn on / off the chains. */
 +    _io_iface->poke8(0x002, _regs.txfilt);
 +    _io_iface->poke8(0x003, _regs.rxfilt);
 +
 +    /* Put back into FDD state if necessary */
 +    if (set_back_to_fdd)
 +        _io_iface->poke8(0x014, 0x21);
 +}
 +
 +/* Tune the RX or TX frequency.
 + *
 + * This is the publicly-accessible tune function. It makes sure the tune
 + * isn't a redundant request, and if not, passes it on to the class's
 + * internal tune function.
 + *
 + * After tuning, it runs any appropriate calibrations. */
 +double ad9361_device_t::tune(direction_t direction, const double value)
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +
 +    if (direction == RX) {
 +        if (freq_is_nearly_equal(value, _req_rx_freq)) {
 +            return _rx_freq;
 +        }
 +
 +    } else if (direction == TX) {
 +        if (freq_is_nearly_equal(value, _req_tx_freq)) {
 +            return _tx_freq;
 +        }
 +
 +    } else {
 +        throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
 +    }
 +
 +    /* If we aren't already in the ALERT state, we will need to return to
 +     * the FDD state after tuning. */
 +    int not_in_alert = 0;
 +    if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
 +        /* Force the device into the ALERT state. */
 +        not_in_alert = 1;
 +        _io_iface->poke8(0x014, 0x01);
 +    }
 +
 +    /* Tune the RF VCO! */
 +    double tune_freq = _tune_helper(direction, value);
 +
 +    /* Run any necessary calibrations / setups */
 +    if (direction == RX) {
 +        _program_gain_table();
 +    }
 +
 +    /* Update the gain settings. */
 +    _reprogram_gains();
 +
 +    /* Run the calibration algorithms. */
 +    _calibrate_tx_quadrature();
 +    _calibrate_rx_quadrature();
 +
 +    /* If we were in the FDD state, return it now. */
 +    if (not_in_alert) {
 +        _io_iface->poke8(0x014, 0x21);
 +    }
 +
 +    return tune_freq;
 +}
 +
 +/* Set the gain of RX1, RX2, TX1, or TX2.
 + *
 + * Note that the 'value' passed to this function is the actual gain value,
 + * _not_ the gain index. This is the opposite of the eval software's GUI!
 + * Also note that the RX chains are done in terms of gain, and the TX chains
 + * are done in terms of attenuation. */
 +double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +
 +    if (direction == RX) {
 +        /* Indexing the gain tables requires an offset from the requested
 +         * amount of total gain in dB:
 +         *      < 1300MHz: dB + 5
 +         *      >= 1300MHz and < 4000MHz: dB + 3
 +         *      >= 4000MHz and <= 6000MHz: dB + 14
 +         */
 +        int gain_offset = 0;
 +        if (_rx_freq < 1300e6) {
 +            gain_offset = 5;
 +        } else if (_rx_freq < 4000e6) {
 +            gain_offset = 3;
 +        } else {
 +            gain_offset = 14;
 +        }
 +
 +        int gain_index = static_cast<int>(value + gain_offset);
 +
 +        /* Clip the gain values to the proper min/max gain values. */
 +        if (gain_index > 76)
 +            gain_index = 76;
 +        if (gain_index < 0)
 +            gain_index = 0;
 +
 +        if (chain == CHAIN_1) {
 +            _rx1_gain = boost::uint32_t(value);
 +            _io_iface->poke8(0x109, gain_index);
 +        } else {
 +            _rx2_gain = boost::uint32_t(value);
 +            _io_iface->poke8(0x10c, gain_index);
 +        }
 +
 +        return gain_index - gain_offset;
 +    } else {
 +        /* Setting the below bits causes a change in the TX attenuation word
 +         * to immediately take effect. */
 +        _io_iface->poke8(0x077, 0x40);
 +        _io_iface->poke8(0x07c, 0x40);
 +
 +        /* Each gain step is -0.25dB. Calculate the attenuation necessary
 +         * for the requested gain, convert it into gain steps, then write
 +         * the attenuation word. Max gain (so zero attenuation) is 89.75. */
 +        double atten = AD9361_MAX_GAIN - value;
 +        boost::uint32_t attenreg = boost::uint32_t(atten * 4);
 +        if (chain == CHAIN_1) {
 +            _tx1_gain = boost::uint32_t(value);
 +            _io_iface->poke8(0x073, attenreg & 0xFF);
 +            _io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
 +        } else {
 +            _tx2_gain = boost::uint32_t(value);
 +            _io_iface->poke8(0x075, attenreg & 0xFF);
 +            _io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
 +        }
 +        return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
 +    }
 +}
 +
 +void ad9361_device_t::output_test_tone()
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +    /* Output a 480 kHz tone at 800 MHz */
 +    _io_iface->poke8(0x3F4, 0x0B);
 +    _io_iface->poke8(0x3FC, 0xFF);
 +    _io_iface->poke8(0x3FD, 0xFF);
 +    _io_iface->poke8(0x3FE, 0x3F);
 +}
 +
 +void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
 +{
 +    boost::lock_guard<boost::recursive_mutex> lock(_mutex);
 +    _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
 +}
 +
 +}}
 diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.h b/host/lib/usrp/common/ad9361_driver/ad9361_device.h index 2d067fa7d..5770f332a 100644 --- a/host/lib/usrp/common/ad9361_driver/ad9361_device.h +++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.h @@ -1,125 +1,125 @@ -// -// Copyright 2014 Ettus Research LLC -// - -#ifndef INCLUDED_AD9361_DEVICE_H -#define INCLUDED_AD9361_DEVICE_H - -#include <ad9361_client.h> -#include <boost/noncopyable.hpp> -#include <boost/thread/recursive_mutex.hpp> - -namespace uhd { namespace usrp { - -class ad9361_device_t : public boost::noncopyable -{ -public: -    enum direction_t { RX, TX }; -    enum chain_t { CHAIN_1, CHAIN_2 }; - -    ad9361_device_t(ad9361_params::sptr client, ad9361_io::sptr io_iface) : -        _client_params(client), _io_iface(io_iface) {} - -    /* Initialize the AD9361 codec. */ -    void initialize(); - -    /* This function sets the RX / TX rate between AD9361 and the FPGA, and -     * thus determines the interpolation / decimation required in the FPGA to -     * achieve the user's requested rate. -     */ -    double set_clock_rate(const double req_rate); - -    /* Set which of the four TX / RX chains provided by AD9361 are active. -     * -     * AD9361 provides two sets of chains, Side A and Side B. Each side -     * provides one TX antenna, and one RX antenna. The B200 maintains the USRP -     * standard of providing one antenna connection that is both TX & RX, and -     * one that is RX-only - for each chain. Thus, the possible antenna and -     * chain selections are: -     * -     */ -    void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2); - -    /* Tune the RX or TX frequency. -     * -     * This is the publicly-accessible tune function. It makes sure the tune -     * isn't a redundant request, and if not, passes it on to the class's -     * internal tune function. -     * -     * After tuning, it runs any appropriate calibrations. */ -    double tune(direction_t direction, const double value); - -    /* Set the gain of RX1, RX2, TX1, or TX2. -     * -     * Note that the 'value' passed to this function is the actual gain value, -     * _not_ the gain index. This is the opposite of the eval software's GUI! -     * Also note that the RX chains are done in terms of gain, and the TX chains -     * are done in terms of attenuation. */ -    double set_gain(direction_t direction, chain_t chain, const double value); - -    /* Make AD9361 output its test tone. */ -    void output_test_tone(); - -    /* Turn on/off AD9361's TX port --> RX port loopback. */ -    void data_port_loopback(const bool loopback_enabled); - -    //Constants -    static const double AD9361_MAX_GAIN         = 89.75; -    static const double AD9361_MAX_CLOCK_RATE   = 61.44e6; - -private:    //Methods -    void _program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs); -    void _setup_tx_fir(size_t num_taps); -    void _setup_rx_fir(size_t num_taps); -    void _calibrate_lock_bbpll(); -    void _calibrate_synth_charge_pumps(); -    double _calibrate_baseband_rx_analog_filter(); -    double _calibrate_baseband_tx_analog_filter(); -    void _calibrate_secondary_tx_filter(); -    void _calibrate_rx_TIAs(); -    void _setup_adc(); -    void _calibrate_baseband_dc_offset(); -    void _calibrate_rf_dc_offset(); -    void _calibrate_rx_quadrature(); -    void _tx_quadrature_cal_routine(); -    void _calibrate_tx_quadrature(); -    void _program_mixer_gm_subtable(); -    void _program_gain_table(); -    void _setup_gain_control(); -    void _setup_synth(direction_t direction, double vcorate); -    double _tune_bbvco(const double rate); -    void _reprogram_gains(); -    double _tune_helper(direction_t direction, const double value); -    double _setup_rates(const double rate); - -private:    //Members -    typedef struct { -        boost::uint8_t vcodivs; -        boost::uint8_t inputsel; -        boost::uint8_t rxfilt; -        boost::uint8_t txfilt; -        boost::uint8_t bbpll; -        boost::uint8_t bbftune_config; -        boost::uint8_t bbftune_mode; -    } chip_regs_t; - -    //Interfaces -    ad9361_params::sptr _client_params; -    ad9361_io::sptr     _io_iface; -    //Intermediate state -    double              _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq; -    double              _baseband_bw, _bbpll_freq, _adcclock_freq; -    double              _req_clock_rate, _req_coreclk; -    boost::uint16_t     _rx_bbf_tunediv; -    boost::uint8_t      _curr_gain_table; -    boost::uint32_t     _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain; -    boost::int32_t      _tfir_factor; -    //Register soft-copies -    chip_regs_t         _regs; -    //Synchronization -    boost::recursive_mutex  _mutex; -}; - -}}  //namespace - -#endif /* INCLUDED_AD9361_DEVICE_H */ +//
 +// Copyright 2014 Ettus Research LLC
 +//
 +
 +#ifndef INCLUDED_AD9361_DEVICE_H
 +#define INCLUDED_AD9361_DEVICE_H
 +
 +#include <ad9361_client.h>
 +#include <boost/noncopyable.hpp>
 +#include <boost/thread/recursive_mutex.hpp>
 +
 +namespace uhd { namespace usrp {
 +
 +class ad9361_device_t : public boost::noncopyable
 +{
 +public:
 +    enum direction_t { RX, TX };
 +    enum chain_t { CHAIN_1, CHAIN_2 };
 +
 +    ad9361_device_t(ad9361_params::sptr client, ad9361_io::sptr io_iface) :
 +        _client_params(client), _io_iface(io_iface) {}
 +
 +    /* Initialize the AD9361 codec. */
 +    void initialize();
 +
 +    /* This function sets the RX / TX rate between AD9361 and the FPGA, and
 +     * thus determines the interpolation / decimation required in the FPGA to
 +     * achieve the user's requested rate.
 +     */
 +    double set_clock_rate(const double req_rate);
 +
 +    /* Set which of the four TX / RX chains provided by AD9361 are active.
 +     *
 +     * AD9361 provides two sets of chains, Side A and Side B. Each side
 +     * provides one TX antenna, and one RX antenna. The B200 maintains the USRP
 +     * standard of providing one antenna connection that is both TX & RX, and
 +     * one that is RX-only - for each chain. Thus, the possible antenna and
 +     * chain selections are:
 +     *
 +     */
 +    void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2);
 +
 +    /* Tune the RX or TX frequency.
 +     *
 +     * This is the publicly-accessible tune function. It makes sure the tune
 +     * isn't a redundant request, and if not, passes it on to the class's
 +     * internal tune function.
 +     *
 +     * After tuning, it runs any appropriate calibrations. */
 +    double tune(direction_t direction, const double value);
 +
 +    /* Set the gain of RX1, RX2, TX1, or TX2.
 +     *
 +     * Note that the 'value' passed to this function is the actual gain value,
 +     * _not_ the gain index. This is the opposite of the eval software's GUI!
 +     * Also note that the RX chains are done in terms of gain, and the TX chains
 +     * are done in terms of attenuation. */
 +    double set_gain(direction_t direction, chain_t chain, const double value);
 +
 +    /* Make AD9361 output its test tone. */
 +    void output_test_tone();
 +
 +    /* Turn on/off AD9361's TX port --> RX port loopback. */
 +    void data_port_loopback(const bool loopback_enabled);
 +
 +    //Constants
 +    static const double AD9361_MAX_GAIN;
 +    static const double AD9361_MAX_CLOCK_RATE;
 +
 +private:    //Methods
 +    void _program_fir_filter(direction_t direction, int num_taps, boost::uint16_t *coeffs);
 +    void _setup_tx_fir(size_t num_taps);
 +    void _setup_rx_fir(size_t num_taps);
 +    void _calibrate_lock_bbpll();
 +    void _calibrate_synth_charge_pumps();
 +    double _calibrate_baseband_rx_analog_filter();
 +    double _calibrate_baseband_tx_analog_filter();
 +    void _calibrate_secondary_tx_filter();
 +    void _calibrate_rx_TIAs();
 +    void _setup_adc();
 +    void _calibrate_baseband_dc_offset();
 +    void _calibrate_rf_dc_offset();
 +    void _calibrate_rx_quadrature();
 +    void _tx_quadrature_cal_routine();
 +    void _calibrate_tx_quadrature();
 +    void _program_mixer_gm_subtable();
 +    void _program_gain_table();
 +    void _setup_gain_control();
 +    void _setup_synth(direction_t direction, double vcorate);
 +    double _tune_bbvco(const double rate);
 +    void _reprogram_gains();
 +    double _tune_helper(direction_t direction, const double value);
 +    double _setup_rates(const double rate);
 +
 +private:    //Members
 +    typedef struct {
 +        boost::uint8_t vcodivs;
 +        boost::uint8_t inputsel;
 +        boost::uint8_t rxfilt;
 +        boost::uint8_t txfilt;
 +        boost::uint8_t bbpll;
 +        boost::uint8_t bbftune_config;
 +        boost::uint8_t bbftune_mode;
 +    } chip_regs_t;
 +
 +    //Interfaces
 +    ad9361_params::sptr _client_params;
 +    ad9361_io::sptr     _io_iface;
 +    //Intermediate state
 +    double              _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq;
 +    double              _baseband_bw, _bbpll_freq, _adcclock_freq;
 +    double              _req_clock_rate, _req_coreclk;
 +    boost::uint16_t     _rx_bbf_tunediv;
 +    boost::uint8_t      _curr_gain_table;
 +    boost::uint32_t     _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain;
 +    boost::int32_t      _tfir_factor;
 +    //Register soft-copies
 +    chip_regs_t         _regs;
 +    //Synchronization
 +    boost::recursive_mutex  _mutex;
 +};
 +
 +}}  //namespace
 +
 +#endif /* INCLUDED_AD9361_DEVICE_H */
  | 
