diff options
Diffstat (limited to 'lib/fec/decode_rs.h')
| -rw-r--r-- | lib/fec/decode_rs.h | 298 | 
1 files changed, 298 insertions, 0 deletions
| diff --git a/lib/fec/decode_rs.h b/lib/fec/decode_rs.h new file mode 100644 index 0000000..c165cf3 --- /dev/null +++ b/lib/fec/decode_rs.h @@ -0,0 +1,298 @@ +/* The guts of the Reed-Solomon decoder, meant to be #included + * into a function body with the following typedefs, macros and variables supplied + * according to the code parameters: + + * data_t - a typedef for the data symbol + * data_t data[] - array of NN data and parity symbols to be corrected in place + * retval - an integer lvalue into which the decoder's return code is written + * NROOTS - the number of roots in the RS code generator polynomial, + *          which is the same as the number of parity symbols in a block. +            Integer variable or literal. + * NN - the total number of symbols in a RS block. Integer variable or literal. + * PAD - the number of pad symbols in a block. Integer variable or literal. + * ALPHA_TO - The address of an array of NN elements to convert Galois field + *            elements in index (log) form to polynomial form. Read only. + * INDEX_OF - The address of an array of NN elements to convert Galois field + *            elements in polynomial form to index (log) form. Read only. + * MODNN - a function to reduce its argument modulo NN. May be inline or a macro. + * FCR - An integer literal or variable specifying the first consecutive root of the + *       Reed-Solomon generator polynomial. Integer variable or literal. + * PRIM - The primitive root of the generator poly. Integer variable or literal. + * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this + *         undefined for production code + + * The memset(), memmove(), and memcpy() functions are used. The appropriate header + * file declaring these functions (usually <string.h>) must be included by the calling + * program. + */ + + +#if !defined(NROOTS) +#error "NROOTS not defined" +#endif + +#if !defined(NN) +#error "NN not defined" +#endif + +#if !defined(PAD) +#error "PAD not defined" +#endif + +#if !defined(ALPHA_TO) +#error "ALPHA_TO not defined" +#endif + +#if !defined(INDEX_OF) +#error "INDEX_OF not defined" +#endif + +#if !defined(MODNN) +#error "MODNN not defined" +#endif + +#if !defined(FCR) +#error "FCR not defined" +#endif + +#if !defined(PRIM) +#error "PRIM not defined" +#endif + +#if !defined(NULL) +#define NULL ((void *)0) +#endif + +#undef MIN +#define	MIN(a,b)	((a) < (b) ? (a) : (b)) +#undef A0 +#define A0 (NN) + +{ +  int deg_lambda, el, deg_omega; +  int i, j, r,k; +  data_t u,q,tmp,num1,num2,den,discr_r; +  data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly +					 * and syndrome poly */ +  data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1]; +  data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS]; +  int syn_error, count; + +  /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ +  for(i=0;i<NROOTS;i++) +    s[i] = data[0]; + +  for(j=1;j<NN-PAD;j++){ +    for(i=0;i<NROOTS;i++){ +      if(s[i] == 0){ +	s[i] = data[j]; +      } else { +	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)]; +      } +    } +  } + +  /* Convert syndromes to index form, checking for nonzero condition */ +  syn_error = 0; +  for(i=0;i<NROOTS;i++){ +    syn_error |= s[i]; +    s[i] = INDEX_OF[s[i]]; +  } + +  if (!syn_error) { +    /* if syndrome is zero, data[] is a codeword and there are no +     * errors to correct. So return data[] unmodified +     */ +    count = 0; +    goto finish; +  } +  memset(&lambda[1],0,NROOTS*sizeof(lambda[0])); +  lambda[0] = 1; + +  if (no_eras > 0) { +    /* Init lambda to be the erasure locator polynomial */ +    lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))]; +    for (i = 1; i < no_eras; i++) { +      u = MODNN(PRIM*(NN-1-eras_pos[i])); +      for (j = i+1; j > 0; j--) { +	tmp = INDEX_OF[lambda[j - 1]]; +	if(tmp != A0) +	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)]; +      } +    } + +#if DEBUG >= 1 +    /* Test code that verifies the erasure locator polynomial just constructed +       Needed only for decoder debugging. */ +     +    /* find roots of the erasure location polynomial */ +    for(i=1;i<=no_eras;i++) +      reg[i] = INDEX_OF[lambda[i]]; + +    count = 0; +    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { +      q = 1; +      for (j = 1; j <= no_eras; j++) +	if (reg[j] != A0) { +	  reg[j] = MODNN(reg[j] + j); +	  q ^= ALPHA_TO[reg[j]]; +	} +      if (q != 0) +	continue; +      /* store root and error location number indices */ +      root[count] = i; +      loc[count] = k; +      count++; +    } +    if (count != no_eras) { +      printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras); +      count = -1; +      goto finish; +    } +#if DEBUG >= 2 +    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); +    for (i = 0; i < count; i++) +      printf("%d ", loc[i]); +    printf("\n"); +#endif +#endif +  } +  for(i=0;i<NROOTS+1;i++) +    b[i] = INDEX_OF[lambda[i]]; +   +  /* +   * Begin Berlekamp-Massey algorithm to determine error+erasure +   * locator polynomial +   */ +  r = no_eras; +  el = no_eras; +  while (++r <= NROOTS) {	/* r is the step number */ +    /* Compute discrepancy at the r-th step in poly-form */ +    discr_r = 0; +    for (i = 0; i < r; i++){ +      if ((lambda[i] != 0) && (s[r-i-1] != A0)) { +	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])]; +      } +    } +    discr_r = INDEX_OF[discr_r];	/* Index form */ +    if (discr_r == A0) { +      /* 2 lines below: B(x) <-- x*B(x) */ +      memmove(&b[1],b,NROOTS*sizeof(b[0])); +      b[0] = A0; +    } else { +      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ +      t[0] = lambda[0]; +      for (i = 0 ; i < NROOTS; i++) { +	if(b[i] != A0) +	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])]; +	else +	  t[i+1] = lambda[i+1]; +      } +      if (2 * el <= r + no_eras - 1) { +	el = r + no_eras - el; +	/* +	 * 2 lines below: B(x) <-- inv(discr_r) * +	 * lambda(x) +	 */ +	for (i = 0; i <= NROOTS; i++) +	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN); +      } else { +	/* 2 lines below: B(x) <-- x*B(x) */ +	memmove(&b[1],b,NROOTS*sizeof(b[0])); +	b[0] = A0; +      } +      memcpy(lambda,t,(NROOTS+1)*sizeof(t[0])); +    } +  } + +  /* Convert lambda to index form and compute deg(lambda(x)) */ +  deg_lambda = 0; +  for(i=0;i<NROOTS+1;i++){ +    lambda[i] = INDEX_OF[lambda[i]]; +    if(lambda[i] != A0) +      deg_lambda = i; +  } +  /* Find roots of the error+erasure locator polynomial by Chien search */ +  memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0])); +  count = 0;		/* Number of roots of lambda(x) */ +  for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { +    q = 1; /* lambda[0] is always 0 */ +    for (j = deg_lambda; j > 0; j--){ +      if (reg[j] != A0) { +	reg[j] = MODNN(reg[j] + j); +	q ^= ALPHA_TO[reg[j]]; +      } +    } +    if (q != 0) +      continue; /* Not a root */ +    /* store root (index-form) and error location number */ +#if DEBUG>=2 +    printf("count %d root %d loc %d\n",count,i,k); +#endif +    root[count] = i; +    loc[count] = k; +    /* If we've already found max possible roots, +     * abort the search to save time +     */ +    if(++count == deg_lambda) +      break; +  } +  if (deg_lambda != count) { +    /* +     * deg(lambda) unequal to number of roots => uncorrectable +     * error detected +     */ +    count = -1; +    goto finish; +  } +  /* +   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo +   * x**NROOTS). in index form. Also find deg(omega). +   */ +  deg_omega = deg_lambda-1; +  for (i = 0; i <= deg_omega;i++){ +    tmp = 0; +    for(j=i;j >= 0; j--){ +      if ((s[i - j] != A0) && (lambda[j] != A0)) +	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])]; +    } +    omega[i] = INDEX_OF[tmp]; +  } + +  /* +   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = +   * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form +   */ +  for (j = count-1; j >=0; j--) { +    num1 = 0; +    for (i = deg_omega; i >= 0; i--) { +      if (omega[i] != A0) +	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])]; +    } +    num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)]; +    den = 0; +     +    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ +    for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) { +      if(lambda[i+1] != A0) +	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])]; +    } +#if DEBUG >= 1 +    if (den == 0) { +      printf("\n ERROR: denominator = 0\n"); +      count = -1; +      goto finish; +    } +#endif +    /* Apply error to data */ +    if (num1 != 0 && loc[j] >= PAD) { +      data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])]; +    } +  } + finish: +  if(eras_pos != NULL){ +    for(i=0;i<count;i++) +      eras_pos[i] = loc[i]; +  } +  retval = count; +} | 
